TheL-LacticAcid(L-Lactate)AssayKitisused forthespecificmeasurementandanalysisofL-lacticacid(L-lactate)inbeverages,meat,dairyandfoodproducts.
Grapeandwineanalysis:Oenologiststoexploitadvancedtestkits.
Charnock,S.C.&McCleary,B.V.(2005).RevuedesEnology,117,1-5.
LinktoArticle
ReadAbstract
Itiswithoutdoubtthattestingplaysapivotalrolethroughoutthewholeofthevinificationprocess.Toproducethebestposs
IBLequalitywineandtominimiseprocessproblemssuchas“stuck”fermentationortroublesomeinfections,itisnowrecognisedthatifpossibletestingshouldbeginpriortoharvestingofthegrapesandcontinuethroughtobottling.Tr
ADItionalmethodsofwineanalysisareoftenexpensive,timeconsuming,requireeitherelaborateequipmentorspecialistexpertiseandfrequentlylackaccuracy.However,enzymaticbio-analysisenablestheaccuratemeasurementofthevastmajorityofanalytesofinteresttothewinemaker,usingjustonepieceofapparatus,thespectrophotometer(
seepreviousissueNo.116foradetailedtechnicalreview).Grapejuiceandwineareamenabletoenzymatictestingasbeingliquidstheyarehomogenous,easytomanipulate,andcangenerallybeanalysedwithoutanysamplepreparation.
Megazyme“advanced”winetestkitsgeneralcharacteristicsandvalidation.
Charnock,S.J.,McCleary,B.V.,Daverede,C.&Gallant,P.(2006).ReveuedesOenologues,120,1-5.
LinktoArticle
ReadAbstract
ManyoftheenzymatictestkitsareofficialmethodsofprestigiousorganisationssuchastheAssociationofOfficialAnalyticalChemicals(AOAC)andtheAmericanAssociationofCerealChemists(AACC)inresponsetotheinterestfromoenologists.Megazymedecidedtouseitslonghistoryofenzymaticbio-analysistomakeasignificantcontributiontothewineindustry,bythedevelopmentofarangeofadvancedenzymatictestkits.Thistaskhasnowbeensuccessfullycompletedthroughthestrategicandcomprehensiveprocessofidentifyinglimitationsofexistingenzymaticbio-analysistestkitswheretheyoccurred,andthenusingadvancedtechniques,suchasmolecular
BIOLOGy(
photo1),torapidlyovercomethem.Noveltestkitshavealsobeendevelopedforanalytesofemerginginteresttotheoenologist,suchasyeastavailablenitrogen(
YAN;seepages2-3ofissue117article),orwherepreviouslyenzymesweresimplyeithernotavailable,orweretooexpensivetoemploy,suchasforD-mannitolanalysis.
ProductionofL-lacticacidfromagreenmicroalga,Hydrodictyonreticulum,byLactobacillusparacaseiLA104isolatedfromthetraditionalKoreanfood,makgeolli.
Nguyen,C.M.,Kim,J.S.,Hwang,H.J.,Park,M.S.,Choi,G.J.,Choi,Y.H.,Jang,K.S.&Kim,J.C.(2012).BioresourceTechnology,110,552-559.
LinktoArticle
ReadAbstract
Thefreshwatermicroalga,Hydrodictyonreticulum,thatcontained47.5%reducingsugarsincluding35%glucosewasusedassubstratefortheproductionofL-lacticacid(LA)byLA-producingbacteria.LactobacillusparacaseiLA104wasselectedforfermentationina5-lfermentorsinceitwasabletogrowatpH3,60gLA/l,200gglucose/l,125gNaCl/l,and45°Candproducedover97.3%opticallypureL-lacticacidwithglucoseasasubstrate.SimultaneoussaccharificationandcofermentationfromH.reticulumtoL-LAusingLA104wasinvestigatedinajarfermentor.Theyieldreached46g/100gH.reticulumdrymaterial,withafinalconcentrationof37.11g/landaproductivityof1.03g/l/h.ThisisthefirstreportoftheproductionofL-LAfromamicroalga,andH.reticulumcouldbeapotentialfeedstockforlarge-scaleproductionofL-LAbyLA104.
AnovellacticacidbacteriumfortheproductionofhighpurityL-lacticacid,Lactobacillusparacaseisubsp.paracaseiCHB2121.
Moon,S.K.,Wee,Y.J.&Choi,G.W.(2012).JournalofBioscienceandBioengineering,114(2),155-159.
LinktoArticle
ReadAbstract
Fermentation-derivedlacticacidhasseveralpotentialindustrialusesasanintermediatecarbonchemicalandarawmaterialforbiodegradablepolymer.Wethereforeundertooktheidentificationofanovelbacterialstrainthatiscapableofproducinghighconcentrationsoflacticacidandhaspotentialcommercialapplications.AnovelL(+)-lacticacidproducingbacterium,Lactobacillusparacaseisubsp.paracaseiCHB2121wasisolatedfromsoilobtainednearanethanolproductionfactoryandidentifiedby16SrRNAgenesequenceanalysisandcharacterizationusinganAPI50CHLkit.L.paracaseisubsp.paracaseiCHB2121efficientlyproduced192g/Llacticacidfrommediumcontaining200g/Lofglucose,with3.99g/(L•h)productivity,and0.96g/gyield.Inaddition,theopticalpurityoftheproducedlacticacidwasestimatedtobe96.6%L(+)-lacticacid.ThenewlyidentifiedL.paracaseisubsp.paracaseiCHB2121efficientlyproduceshighconcentrationsoflacticacid,andmaybesuitableforuseintheindustrialproductionoflacticacid.
HistoneacetylationregulatesintracellularpH.
McBrian,M.A.,Behbahan,I.S.,Ferrari,R.,Su,T.,Huang,T.W.,Li,K.,Hong,C.S.,Christofk,H.R.,Vogelauer,M.,Seligson,D.B.&Kurdistani,S.K.(2013).MolecularCell,49(2),310-321.
LinktoArticle
ReadAbstract
Differencesingloballevelsofhistoneacetylationoccurinnormalandcancercells,althoughthereasonwhycellsregulatetheselevelshasbeenunclear.HerewedemonstratearoleforhistoneacetylationinregulatingintracellularpH(pHi).AspHidecreases,histonesaregloballydeacetylatedbyhistonedeacetylases(HDACs),andthereleasedacetateanionsarecoexportedwithprotonsoutofthecellbymonocarboxylatetransporters(MCTs),preventingfurtherreductionsinpHi.Conversely,globalhistoneacetylationincreasesaspHirises,suchaswhenrestingcellsareinducedtoproliferate.InhibitionofHDACsorMCTsdecreasesacetateexportandlowerspHi,particularlycompromisingpHimaintenanceinacidicenvironments.GlobaldeacetylationatlowpHisreflectedatagenomiclevelbydecreasedabundanceandextensiveredistributionofacetylationthroughoutthegenome.Thus,acetylationofchromatinfunctionsasarheostattoregulatepHiwithimportantimplicationsformechanismofactionandtherapeuticuseofHDACinhibitors.
RelationshipbetweenFishSizeandMetabolicRateintheOxyconformingInangaGalaxiasmaculatusRevealsSize-DependentStrategiestoWithstandHypoxia.
Urbina,M.A.&Glover,C.N.(2013).PhysiologicalandBiochemicalZoology,86(6),740-749.
LinktoArticle
ReadAbstract
Therelationshipbetweenmetabolicrateandbodysizeinanimalsisunlikelytobeaconstantbutisinsteadshapedbyavarietyofintrinsic(i.e.,physiological)andextrinsic(i.e.,environmental)factors.Thisstudyexaminedtheeffectofenvironmentaloxygentensiononoxygenconsumptionasafunctionofbodymassinthegalaxiidfish,inanga(
Galaxiasmaculatus).Asanoxyconformer,thisfishlacksovertintrinsicregulationofoxygenconsumption,eliminatingthisasafactoraffectingthescalingrelationshipatdifferentoxygentensions.Therelationshipbetweenoxygenconsumptionrateandbodysizewasbestdescribedbyapowerfunction,withanexponentof0.82,higherthanthetheoreticalvaluesof0.66or0.75.ThevalueofthisexponentwassignificantlyalteredbyenvironmentalPo
2,firstincreasingasPo
2decreasedandthendecliningatthelowestPo
2tested.Thesedatasuggestthatthescalingexponentisspeciesspecificandregulatedbyextrinsicfactors.Fur
Thermore,theexternalPo
2atwhichfishlostequilibriumwasrelatedtofishsize,aneffectexplainedbythescalingofanaerobiccapacitywithfishmass.Therefore,althoughbiggerfishwereforcedtodepressaerobicmetabolismmorerapidlythansmallfishwhenexposedtoprogressivehypoxia,theywerebetterabletoenactanaerobicmetabolism,potentiallyextendingtheirsurvivalinhypoxia.
ExposuretoelevatedtemperatureandpCO2reducesrespirationrateandenergystatusintheperiwinkleLittorinalittorea.
Melatunan,S.,Calosi,P.,Rundle,S.D.,Moody,A.J.&Widdicombe,S.(2011).PhysiologicalandBiochemicalZoology,84(6),583-594.
LinktoArticle
ReadAbstract
Inthefuture,marineorganismswillfacethechallengeofcopingwithmultipleenvironmentalchangesassociatedwithincreasedlevelsofatmosphericPco2,suchasoceanwarmingandacidification.Topredicthoworganismsmayormaynotmeetthesechallenges,anin-depthunderstandingofthephysiologicalandbiochemicalmechanismsunderpinningorganismalresponsestoclimatechangeisneeded.Here,weinvestigatetheeffectsofelevatedPco2andtemperatureonthewhole-organismandcellularphysiologyoftheperiwinkleLittorinalittorea.Metabolicrates(measuredasrespirationrates),adenylateenergynucleotideconcentrationsandindexes,andend-productmetaboliteconcentrationsweremeasured.Comparedwithvaluesforcontrolconditions,snailsdecreasedtheirrespirationrateby31%inresponsetoelevatedPco2andby15%inresponsetoacombinationofincreasedPco2andtemperature.Decreasedrespirationrateswereassociatedwithmetabolicreductionandanincreaseinend-productmetabolitesinacidifiedtreatments,indicatinganincreasedrelianceonanaerobicmetabolism.TherewasalsoaninteractiveeffectofelevatedPco2andtemperatureontotaladenylatenucleotides,whichwasapparentlycompensatedforbythemaintenanceofadenylateenergychargeviaAMPdeaminaseactivity.Ourfindingssuggestthatmarineintertidalorganismsarelikelytoexhibitcomplexphysiologicalresponsestofutureenvironmentaldrivers,withlikelynegativeeffectsongrowth,populationdynamics,and,ultimately,ecosystemprocesses.
Constructionofafood-gradecellsurfacedisplaysystemforLactobacilluscasei.
Qin,J.,Wang,X.,Kong,J.,Ma,C.&Xu,P.(2014).MicrobiologicalResearch,169(9-10),733-740.
LinktoArticle
ReadAbstract
Inthisstudy,afood-gradecellsurfacedisplayhost/vectorsystemfor
Lactobacilluscaseiwasconstructed.Thefood-gradehost
L.caseiQ-5wasalactose-deficientderivativeof
L.caseiATCC334obtainedbyplasmidelimination.Thefood-gradecellsurfacedisplayvectorwasconstructedbasedonsafeDNAelementsfromlacticacidbacteriacontainingthefollowing:pSH71repliconfrom
Lactococcuslactis,lactosemetabolismgenesfrom
L.caseiATCC334ascomplementation
Markers,andsurfacelayerproteingenefrom
LactobacillusacidophilusATCC4356forcellsurfacedisplay.Thefeasibilityofthenewhost/vectorsystemwasverifiedbytheexpressionofgreenfluorescentprotein(GFP)on
L.casei.Laserscanningconfocalmicroscopyandimmunofluorescenceanalysisusinganti-GFPantibodyconfirmedthatGFPwasanchoredonthesurfaceoftherecombinantcells.Thestabilityofrecombinant
L.caseicellsinartificialgastrointestinalconditionswasverified,whichisbeneficialfororalvaccinationapplications.Theseresultsindicatethatthefood-gradehost/vectorsystemcanbeanexcellentantigendeliveryvehicleinoralvaccineconstruction.
IdentificationofspoilagemarkermetabolitesinIrishchickenbreastmuscleusingHPLC,GC–MScoupledwithSPMEandtraditionalchemicaltechniques.
Alexandrakis,D.,Brunton,N.P.,Downey,G.&Scannell,A.G.(2012).FoodandBioprocessTechnology,5(5),1917-1923.
LinktoArticle
ReadAbstract
TheaimofthisinvestigationwastodeterminethemetabolitesofspoilagepresentonthesurfaceofIrishchickenbreastmuscleinordertoidentifybiomarkersofmicrobialspoilageandtoverifytheresultsofapreviousstudywhichsuggestedthattheincreaseoffreeaminoacidsisthemainspectralinfluencefactorleadingtothenearandmiddleinfrareddetectionofmicrobialspoilage.Irish-rearedchickenbreastmusclesampleswereindividuallypackedandstoredat4°Cfor8daysunderaerobicconditions.MicrobiologicalanalysisrevealedthatPseudomonasspp.andBrochothrixthermosphactawerethepredominantorganisms(totalviablecounts(TVC),4.24,6.37and8.6colonyformingunity(CFU)g-1fordays0,4and8,respectively,Pseudomonas3.2,5.1andfinally,onday87.4logCFUg-1).GlucoseandL-lactateconcentrationsdecreasedbuttheconcentrationofwater-solublepolypeptidesandaminoacidsincreasedoverstoragetime.HPLCanalysisoffreeaminoacidsrevealedanincreaseofthetotalconcentrationbutthecompositionoftheprofilesdidnotchangeovertime.Headspaceanalysisdetectedthefollowingvolatilecompounds:ethanol,acetone,ethylacetate,methylbenzoate,heptane,C15,C12,methylethylketone,carbondisulphide,dimethylsulphide,hexanal,andtoluene.Ofinterestisthefactthatdetectionofsulphidesandanincreaseofethanol,acetone,andethylacetateconcentrationsoccurredfromday4to8.Theincreaseinfreeaminoacidsthroughoutstorageandtheproductionofvolatilecompoundsafterday4requirefurtherinvestigationbutareselectedaspotentialbiomarkersofmicrobialspoilageastheycouldbeanalyticallydetectedbeforetheacceptedlevelsofsensoryspoilagedetection.
ImprovementoflacticacidproductioninSaccharomycescerevisiaebycellsortingforhighintracellularpH.
Valli,M.,Sauer,M.,Branduardi,P.,Borth,N.,Porro,D.&Mattanovich,D.(2006).AppliedandEnvironmentalMicrobiology,72(8),5492-5499.
LinktoArticle
ReadAbstract
YeaststrainsexpressingheterologousL-lactatedehydrogenasescanproducelacticacid.Althoughthesemicroorganismsaretolerantofacidicenvironments,itisknownthatatlowpH,lacticacidexertsahighlevelofstressonthecells.InthepresentstudyweanalyzedintracellularpH(pHi)andviabilitybystainingwithcSNARF-4Fandethidiumbromide,respectively,oftwolactic-acid-producingstrainsofSaccharomycescerevisiae,CEN.PKm850andCEN.PKRWB876.Theresultsshowedthatthestrainproducingmorelacticacid,CEN.PKm850,hasahigherpHi.Duringbatchculture,weobservedinbothstrainsareductionofthemeanpHiandtheappearanceofasubpopulationofcellswithlowpHi.SimultaneousanalysisofpHiandviabilityprovedthatthecellswithlowpHiweredead.Basedontheobservationthatthebetterlactic-acid-producingstrainhadahigherpHiandthatthecellswithlowpHiweredead,wehypothesizedthatwemightfindbetterlacticacidproducersbyscreeningforcellswithinthehighestpHirange.ThescreeningwasperformedonUV-mutagenizedpopulationsthroughthreeconsecutiveroundsofcellsortinginwhichonlytheviablecellswithinthehighestpHirangewereselected.Theresultsshowedthatlacticacidproductionwassignificantlyimprovedinthemajorityofthemutantsobtainedcomparedtotheparentalstrains.Thebestlactic-acidproducingstrainwasidentifiedwithinthescreeningofCEN.PKm850mutants.
Sourdough-leavenedbreadimprovespostprandialglucoseandinsulinplasmalevelsinsubjectswithimpairedglucosetolerance.
Maioli,M.,Pes,G.M.,Sanna,M.,Cherchi,S.,Dettori,M.,Manca,E.&Farris,G.A.(2008).ActaDiabetologica,45(2),91-96.
LinktoArticle
ReadAbstract
Sourdoughbreadhasbeenreportedtoimproveglucosemetabolisminhealthysubjects.Inthisstudypostprandialglycaemicandinsulinaemicresponseswereevaluatedinsubjectswithimpairedglucosetolerance(IGT)whohadamealcontainingsourdoughbreadleavenedwithlactobacilli,incomparisontoareferencemealcontainingbreadleavenedwithbakeryeast.SixteenIGTsubjects(agerange52–75,averageBMI29.9±4.2kg/m2)wererandomlygivenamealcontainingsourdoughbread(A)andamealcontainingthereferencebread(B)intwoseparateoccasionsatthebeginningofthestudyandafter7days.Sourdoughbreadwasleavenedfor8husingastartercontainingautochthonousSaccharomycescerevisiaeandseveralbacilliabletoproduceasignificantamountofD-andL-lacticacid,whereasthereferencebreadwasleavenedfor2hwithcommercialbakeryeastcontainingSaccharomycescerevisiae.Plasmaglucoseandinsulinlevelsweremeasuredattime0,30,60,120,and180min.InIGTsubjectssourdoughbreadinducedasignificantlylowerplasmaglucoseresponseat30minutes(p=0.048)andasmallerincrementalareaundercurve(AUC)Δ0–30andΔ0–60min(p=0.020and0.018respectively)incomparisontothebreadleavenedwithbakeryeast.Plasmainsulinresponsetothistypeofbreadshowedlowervaluesat30min(p=0.045)andasmallerAUCΔ0–30min(p=0.018).ThisstudyshowsthatinsubjectswithIGTglycaemicandinsulinaemicresponsesaftertheconsumptionofsourdoughbreadarelowerthanafterthebreadleavenedwithbakeryeast.Thiseffectislikelyduetothelacticacidproducedduringdoughleaveningaswellasthereducedavailabilityofsimplecarbohydrates.Thus,sourdoughbreadmaypotentiallybeofbenefitinsubjectswithimpairedglucosemetabolism.
Homo-fermentativeproductionofD-lacticacidbyLactobacillussp.employingcaseinwheypermeateasarawfeed-stock.
Prasad,S.,Srikanth,K.,Limaye,A.M.&Sivaprakasam,S.(2014).BiotechnologyLetters,36(6),1303-1307.
LinktoArticle
ReadAbstract
Caseinwheypermeate(CWP),alactose-enricheddairywasteeffluent,isaviablefeedstockfortheproductionofvalue-addedproducts.TwolacticacidbacteriawerecultivatedinasyntheticcaseinwheypermeatemediumwithorwithoutpHcontrol.LactobacilluslactisATCC4797producedD-lacticacid(DLA)at12.5gl-1inabioreactor.ThevaluesofLeudking–Piretmodelparameterssuggestedthatlactatewasagrowth-associatedproduct.BatchfermentationwasalsoperformedemployingCWP(35glactosel-1)withcaseinhydrolysateasanitrogensupplementinabioreactor.After40h,L.lactisproduced24.3glacticacidl-1withanopticalpurity>98%.ThusCWPmayberegardedasapotentialfeed-stockforDLAproduction.
Assessmentoftheinfluenceofbiocharonrumenandsilagefermentation:Alaboratory-scaleexperiment.
CalveloPereira,R.,Muetzel,S.,Arbestain,M.C.,Bishop,P.,Hina,K.&Hedley,M.(2014).AnimalFeedScienceandTechnology,196,22-31.
LinktoArticle
ReadAbstract
Theadditionofbiochar–charcoalproducedfrompyrolysisofcarbonaceousmaterials–tosoilpresentsseveralchallenges,mainlyassociatedwithitslowbulkdensity,dustinessandtheriskoflosswhenappliedtohillpastures.LivestockcouldbeanadequatevehicleforbiochardeliverytoNewZealandpastoralsoilsviadungpats;however,thepotentialeffectsofbiocharonrumenmetabolismneedtobeinvestigated.Theobjectiveofthisstudywastoinvestigatetheeffectofbiocharadditiontograssbeforeensilingonthefermentationprocessandtotestwhethertheadditionofgrasssilagepreparedwithbiocharorbiochardirectlytohayaffectedtheinvitrorumenfermentation.Thestudyincludedtheuseofdifferenttypesofstartingmaterial(cornstoverandpinewoodchips),twopyrolysistemperatures(350and550°C),post-treatment(additionofdifferenttypesofbio-oilataratioof0.050mL/g),anddifferentdosesofbiochar.Theuseofbiocharfromeithercornstoverorpinepyrolysedat550°Cassilageingredientsatdosesfrom21to186gbiochar/kgdrymatterhadnonegativeeffectonthefinalpropertiesofthesilage,andparticularlyonpH,NH4+-N/totalN,andacetic,N-butyricandL-lacticacidconcentrations.Thesamesilagemixtureswith84and186gbiochar/kgdrymatterwereinvitroincubatedwithbufferedrumenfluid.Therewasabuild-upintotalvolatilefattyacids(VFA)production(P<0.05) in="" the="" presence="" of="" biochar="" –="" increasing="" at="" high="" doses="" –="" irrespective="" of="" the="" type="" of="" starting="" material="" considered.="" this="" increase="" in="" vfa="" was="" also="" observed="" when="" biochar="" were="" added="" to="" hay="" before="">0.05)>invitroincubation,andwasenhancedwithlow-temperaturebiochar.Noneofthemixturesofbiocharandhayhadanysignificanteffectonmethaneemissionsandammoniareleased.Therewasnoeffectofstartingmaterialtypeorpost-treatmentontheinvitroincubations.Theresultsobtainedinthisresearchdemonstratethelackofnegativeeffectofbiocharmixedwithgrasssilage,orhay,onrumenchemistryduringinvitroincubations.Iflarge-scalestudiesincludinginvivofeedingofcattlewithbiocharconfirmthesefindings,theuseofcattleasadeliverysystemcouldbecomeanovelsolutiontosafelyapplybiochartoNewZealandpastoralsoils.
Behavioural,physiologicalandbiochemicalresponsestoaquatichypoxiainthefreshwatercrayfish,Paranephropszealandicus.
Broughton,R.J.,Marsden,I.D.,Hill,J.V.&Glover,C.N.(2017).ComparativeBiochemistryandPhysiologyPartA:Molecular&IntegrativePhysiology,212,72-80.
LinktoArticle
ReadAbstract
HypoxiaresultingfromaquaticeutrophicationthreatensthepopulationhealthoftheNewZealandfreshwatercrayfish(koura),Paranephropszealandicus.Anintegratedstudy,combiningbehavioural,physiologicalandbiochemicalapproaches,wasthereforeconductedtocharacterisethetoleranceofthisspeciestohypoxia.Whenprovidedwithachoicebetweenwaterflowsofhighorlowdissolvedoxygeninshort-termlaboratoryassays,crayfishdidnotpreferentiallyinhabitwatersofhigherPO2.However,whenanaerialrefugewasprovidedanddissolvedoxygenwasprogressivelydecreased,crayfishemersedataPO2of0.56 ± 0.03 kPa,suggestingarelativelyhightolerancetohypoxia.Closed-boxrespirometrydelineatedaPcrit,thepointatwhichcrayfishtransitionfromoxyregulatingtooxyconforming,of6.0 kPa.SimultaneousmeasurementofheartrateshowednochangesacrossthePO2range.Inresponseto6-hexposurestofixeddissolvedoxygenlevels(normoxia,19.3 kPa;moderatehypoxia,3.5 kPa;andseverehypoxia,1.7 kPa),P.zealandicusshowedahaemolymphPO2thatdeclinedwiththemagnitudeofhypoxia,andwhileplasmapHdeclinedinseverehypoxia,therewerenochangesinplasmaPO2.Plasmaglucoseconcentrationsfell,andplasmalactateincreasedinbothhypoxicgroups.Therewerenochangesintissueglucoseorlactateconcentrations.ThesedataindicatethatP.zealandicusisrelativelytolerantofhypoxia,andpossessesbiochemicalandphysiologicalmechanismsthatfacilitatesurvivalduringshort-termexposurestoacutehypoxia.Ifhypoxiaissevereand/orprolonged,thenthisspeciesiscapableofescapingtoaerialrefugia.