Forthespecificandrapidmeasurementandanalysisofpyruvicacidinbeer,wine,fruitjuice,foodproductsandbodilyfluids.
IdentificationbyHPLC-MSofanthocyaninderivativesinraisins.
Marquez,A.,Dueñas,M.,Serratosa,M.P.&Merida,J.(2012).JournalofChemistry,2013,ArticleID274893.
LinktoArticle
ReadAbstract
Theanthocyanincompositioninredgrapesdriedundercontrolledconditionshasbeenstudied.Pyranoanthocyaninsandcondensedanthocyaninswithflavanolsbyamethylmethinebridgehavebeenidentified.Typically,thesecompoundsappearinwineafterthefermentationprocess,astheyrequirecompoundssuchaspyruvicacid,acetoaceticacid,andacetaldehydefortheirformation.Duringthechamber-dryingprocessastresssituationisoriginated,inducingsignificantchangesinthegrapemetabolismfromaerobictoanaerobic,andasaresultitproducestheactivationofthealcoholdehydrogenaseenzyme(ADH)andothersthatwouldcausetheformationofthesecompounds.Thesederivativesareveryinterestingbecausetheygivegreaterst
ABIlitytothecolorofredwine.
FractionationofsulfurisotopesbyDesulfovibriovulgarismutantslackinghydrogenasesortypeItetrahemecytochromeC3.
Sim,M.S.,Wang,D.T.,Zane,G.M.,Wall,J.D.,Bosak,T.&Ono,S.(2013).
FrontiersinmicroBIOLOGy,4(171),1-10.
LinktoArticle
ReadAbstract
Thesulfurisotopeeffectproducedbysulfatereducingmicrobesiscommonlyusedtotracebiogeochemicalcyclesofsulfurandcarboninaquaticandsedimentaryenvironments.Totestthecontributionofintracellularcouplingbetweencarbonandsulfurmetabolismstotheoverallmagnitudeofthesulfurisotopeeffect,thisstudycomparedsulfurisotopefractionationsbymutantsof
DesulfovibriovulgarisHildenborough.Wetestedmutantstrainslackingoneortwoperiplasmic(Hyd,Hyn-1,Hyn-2,andHys)orcytoplasmichydrogenases(EchandCooL),andamutantlackingtypeItetrahemecytochrome(TpI-c
3).Inbatchculture,wild-type
D.vulgarisanditshydrogenasemutantshadcomparablegrowthkineticsandproducedthesamesulfurisotopeeffects.Thisisconsistentwiththereportedredundancyofhydrogenasesin
D.vulgaris.However,theTpI-c
3mutant(
ΔcycA)exhibitedslowergrowthandsulfatereductionratesinbatchculture,andproducedmoreH
2andanapproximately50%largersulfurisotopeeffect,comparedtothewildtype.ThemagnitudeofsulfurisotopefractionationintheCycAdeletionstrain,thus,increasedduetothedisruptedcouplingofthecarbonoxidationandsulfatereductionpathways.Incontinuousculture,wild-type
D.vulgarisandtheCycAmutantproducedsimilarsulfurisotopeeffects,underscoringtheinfluenceofenvironmentalconditionsontherelativecontributionofhydrogencyclingtotheelectrontransport.Thelargesulfurisotopeeffectsassociatedwiththenon-idealstoichiometryofsulfatereductioninthisstudyimplythatsimultaneousfermentationandsulfatereductionmayberespons
IBLeforsomeofthelargenaturally-occurringsulfurisotopeeffects.Overall,mutantstrainsprovideapowerfultooltotesttheeffectofspecificredoxproteinsandpathwaysonsulfurisotopefractionation.
NewapplicationsforSchizosaccharomycespombeinthealcoholicfermentationofredwines.
Benito,S.,Palomero,F.,Morata,A.,Calderón,F.&Suárez‐Lepe,J.A.(2012).InternationalJournalofFoodScience&Technology,47(10),2101-2108.
LinktoArticle
ReadAbstract
Thefermentationofgrapemustusingnon-Saccharomycesyeastswithparticularmetabolicandbiochemicalpropertiesisofgrowinginterest.Inthepresentwork,redgrapemustwasfermentedusingfourstrainsofSchizosaccharomycespombe(935,936,938and2139),Saccharomycescerevisiae7VAandSaccharomycesuvarumS6U,andcomparisonsweremadeoverthefermentationperiodintermsofmustsugar(glucose+fructose),malicacid,aceticacid,ammonia,primaryaminonitrogen,lacticacid,urea(apossiblefermentationactivatororprecursorofothermetabolites)andpyruvicacid(amoleculeaffectingvitisinformationandthereforecolourstability)concentration.Thecolourintensityofthefermentingmustswasalsorecorded.TheSchizosaccharomycesstrainsconsumedlessprimaryaminonitrogenandproducedlessureaandmorepyruvicacidthanotherSaccharomycesspecies.Further,threeofthefourSchizosaccharomycesstrainscompletedthebreakdownofmalicacidbyday4offermentation.ThemainnegativeeffectoftheuseofSchizosaccharomyceswasstrongaceticacidproduction.TheSchizosaccharomycesstrainsthatproducedmostpyruvicacid(938and936)wereassociatedwithbetter‘wine’colourthantheremainingyeasts.ThestudiedSchizosaccharomycescouldthereforebeofoenologicalinterest.
SelectionofappropriateSchizosaccharomycesstrainsforwinemaking.
Benito,S.,Palomero,F.,Calderón,F.,Palmero,D.&Suárez-Lepe,J.A.(2014).FoodMicrobiology,42,218-224.
LinktoArticle
ReadAbstract
ThispaperdescribestheselectionofSchizosaccharomycesyeastswithadequateoenologicalsuitabilityandhighcapacityforthedegradationofmalicacid.Despitethealmostnon-existentnumberofcommercialstrains,theuseofthisyeastgenushasrecentlybeenrecommendedbytheInternationalOrganisationofVineandWine(OIV,inFrench).Thus,inthepresentstudy,alargenumberofSchizosaccharomycesstrainswereisolatedusingaselectivedifferentialmedium.Initially,classicparametersofoenologicalinterestfortheuseoffermentativestrainsofSaccharomycescerevisiae(themostfrequentlyusedtypeofyeast)wereassessed.Onlyfivestrainsofmoderateaceticacidproductionlowerthan0.4g/Lwereobtainedattheendoffermentation.Other,morespecificfeaturesofthisyeastgenus"physiologywerealsostudied,includingureaseactivityandtheproductionofpyruvicacidandglycerol.Finally,oenologicalsuitabilitywasdeterminedbycomparingselectedstrainswithotherSchizosaccharomycesreferenceandScerevisiaecontrolstrains.Schizosaccharomycesstrainsproduced80%lessureacontent,fourtimeshigherpyruvicacidlevelsand1ghigherglycerolcontentsthantheSaccharomycesreferencestrains.TheresultsconfirmedthatitispossibletoperformselectiveprocessesonmicroorganismsfromthegenusSchizosaccharomycesusingmethodologydevelopedinthisworktoobtainstrainsofindustrialinterest.
PhysiologicalfeaturesofSchizosaccharomycespombeofinterestinmakingofwhitewines.
Benito,S.,Palomero,F.,Morata,A.,Calderón,F.,Palmero,D.&Suárez-Lepe,J.A.(2013).EuropeanFoodResearchandTechnology,236(1),29-36.
LinktoArticle
ReadAbstract
ThisworkstudiesthephysiologyofSchizosaccharomycespombestrain938intheproductionofwhitewinewithhighmalicacidlevelsasthesolefermentativeyeast,aswellasinmixedandsequentialfermentationswithSaccharomycescerevisiaeCruBlanc.TheinductionofcontrolledmaloalcoholicfermentationthroughtheuseofSchizosaccharomycesspp.isnowbeingviewedwithmuchinterest.Theacetic,malicandpyruvicacidconcentrations,relativedensityandpHofthemustsweremeasuredovertheentirefermentationperiod.InallfermentationsinwhichSchizo.pombe938wasinvolved,nearlyallthemalicacidwasconsumedandmoderateaceticconcentrationsproduced.TheureacontentandalcohollevelofthesewineswerenotablylowerthaninthosemadewithSacch.cerevisiaeCruBlancalone.ThepyruvicacidconcentrationwassignificantlyhigherinSchizo.pombefermentations.Thesensorialpropertiesofthedifferentfinalwinesvariedwidely.
Theinfluenceoftheprimaryandsecondaryxanthanstructureontheenzymatichydrolysisofthexanthanbackbone.
Kool,M.M.,Schols,H.A.,Delahaije,R.J.B.M.,Sworn,G.,Wierenga,P.A.&Gruppen,H.(2013).CarbohydratePolymers,97(2),368-375.
LinktoArticle
ReadAbstract
Differentlymodifiedxanthans,varyingindegreeofacetylationand/orpyruvylationwereincubatedwiththeexperimentalcellulasemixtureC1-G1from
MyceliophthoraThermophilaC1.Theionicstrengthand/ortemperatureofthexanthansolutionswerevaried,toobtaindifferentxanthanconformations.Theexactconformationattheselectedincubationconditionswasdeterminedbycirculardichroism.Thexanthandegradationwasanalyzedbysizeexclusionchromatography.Itwasshownthatatafixedxanthanconformation,thebackbonedegradationbycellulasesisequalforeachtypeofxanthan.Completebackbonedegradationisonlyobtainedatafullydisorderedconformation,indicatingthatonlythesecondaryxanthanstructureinfluencesthefinaldegreeofhydrolysisbycellulases.Itistherebyshownthat,independentlyonthedegreeofsubstitution,xanthancanbecompletelyhydrolyzedtooligosaccharides.Theseoligosaccharidescanbeusedtofurtherinvestigatetheprimarystructureofdifferentxanthansandtocorrelatethemolecularstructuretothexanthanfunctionalities.
FormationofpyranoanthocyaninsbySchizosaccharomycespombeduringthefermentationofredmust.
Morata,A.,Benito,S.,Loira,I.,Palomero,F.,Gonzalez,M.C.&Suarez-Lepe,J.A.(2012).InternationalJournalofFoodMicrobiology,159(1),47-53.
LinktoArticle
ReadAbstract
Schizosaccharomycespombeisanon-Saccharomycesyeaststrainthatcanfermentgrapemustswithhighsugarcontents—butitalsohasothermetabolicandphysiologicalpropertiesthatrenderitofgreatinteresttowinebiotechnologists.ThisworkcomparestheproductionofpyranoanthocyaninsbyS.pombe,SaccharomycescerevisiaeandSaccharomycesuvarumduringfermentation.Totalpyranoanthocyaninsrangedfrom11.9to19.4mg/ldependingonthestrainofS.pombeused.Onaverage,S.pombeproducedmorepyruvicacidthandideitherSaccharomycesspecies;asaconsequenceitalsoformedmorevitisinA-typepigments.S.pombe938producedthelargestquantityofvitisinA(11.03±0.82mg/l).Theformationoflargeamountsofpyranoanthocyaninsintensifiesthepost-fermentationcolourofwinessomewhat,aphenomenonthathelpsthemmaintaintheircolouroverageingasthenaturalgrapeanthocyaninsbecomedegraded.SomeoftheS.pombestrainsshowedhydroxycinnamatedecarboxylaseactivity,whichfavourstheformationofvinylphenolicpyranoanthocyanins.FermentationwithS.pombethereforeprovidesaninterestingwayofincreasingtheoverallpyranoanthocyanincontentofredwines,andofstabilisingtheircolourduringageing.
Formationofvitisinsandanthocyanin–flavanoladductsduringredgrapedrying.
Marquez,A.,Dueñas,M.,Serratosa,M.P.&Merida,J.(2012).JournalofAgriculturalandFoodChemistry,60(27),6866-6874.
LinktoArticle
ReadAbstract
Thisstudyevaluatedtheformationofanthocyanin-derivedcompoundsduringtheproductionofsweetredwinesfromMerlotandSyrahgrapespreviouslychamber-driedundercontrolled-temperatureconditions.Themustsfrombothgrapevarietieswerefoundtocontainpelargonidin-3-glucosidethroughoutthevinificationprocess.Besides,HPLC-DAD-MSrevealedthepresenceofpyranoanthocyaninsinunfermentedmustsfromtheraisins.Thesecompoundsareadductsresultingfromthecycloadditionofpyruvicacid(typeAvitisins)andacetaldehyde(typeBvitisins)toanthocyaninmolecules.Theanalysesadditionallyrevealedthepresenceofproductsofthecondensationviaamethylmethinebridgebetweenanthocyaninsand(epi)catechin,whichrequiresthepresenceofacetaldehyde.Theabsenceofpyruvicacid,acetaldehyde,andethanolinthemustsfromfreshgrapesandtheirpresenceinthosefromdriedgrapessupporttheideathatthesecompoundsresultfromenzymatictransformationsbecausethevinificationofthemustsinvolvesnoalcoholicfermentation.Thedryingprocessaltersthepermeabilityofgrapemembranesbythelipoxygenaseactivationeffect(LOX),aswitchtoananaerobicmetabolismandtheresultingtriggeringofthealcoholdehydrogenaseenzyme(ADH).TheactivationoftheseandseveralotherenzymesconfirmedtheoccurrenceofenzymatictransformationsandtheformationofvitisinA,acetylvitisinA,andtheBvitisinsofmalvidin-3-glucoside,peonidin-3-glucoside,peonidin-3-acetylglucoside,andmalvidin-3-acetylglucoside,aswellastheadductsPn-3-glc-methylmethine(epi)catechin,Mv-3-glc-methylmethine(epi)catechin,andMv-3-acetylmethylmethine(epi)catechin.