Megazyme/&alpha-淀粉酶试剂(Ceralpha)/R-CAAR4/200分析/试剂盒/4小瓶
商品编号:
R-CAAR4
品牌:
Megazyme INC
市场价:
¥7344.00
美元价:
4406.40
产品分类:
其它检测试剂盒
公司分类:
Other_kits
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
PurchasehighpurityCeralpha:α-AmylaseReagent–4vialsforthemeasurementofα-amylaseforresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
p-Nitrophenylα-D-maltoheptaoside(blocked),plusexcessα-glucosidaseandglucoamylase.Forthemeasurementofcereal,fungalandbacterialα-amylase.
Measurementofα-amylaseactivityinwhitewheatflour,milledmalt,andmicrobialenzymepreparations,usingtheceralphaassay:Collaborativestudy.
McCleary,B.V.,McNally,M.,Monaghan,D.&Mugford,D.C.(2002).JournalofAOACInternational,85(5),1096-1102.
LinktoArticle
ReadAbstract
Thisstudywasconductedtoevaluatethemethodperformanceofarapidprocedureforthemeasurementofα-amylaseactivityinfloursandmicrobialenzymepreparations.Samplesweremilled(ifnecessary)topassa0.5mmsieveandthenextractedwithabuffer/saltsolution,andtheextractswereclarifiedanddiluted.Aliquotsofdilutedextract(containingα-amylase)wereincubatedwithsubstratemixtureunderdefinedconditionsofpH,temperature,andtime.Thesubstrateusedwasnonreducingend-blockedp-nitrophenylmaltoheptaoside(BPNPG7)inthepresenceofexcessquantitiesofThermostableα-glucosidase.TheblockinggroupinBPNPG7preventshydrolysisofthissubstratebyexo-actingenzymessuchasamyloglucosidase,α-glucosidase,andβ-amylase.Whenthesubstrateiscleavedbyendo-actingα-amylase,thenitrophenyloligosaccharideisimmediatelyandcompletelyhydrolyzedtop-nitrophenolandfreeglucosebytheexcessquantitiesofα-glucosidasepresentinthesubstratemixture.Thereactionisterminated,andthephenolatecolordevelopedbytheadditionofanalkalinesolutionismeasuredat400nm.AmylaseactivityisexpressedintermsofCeralphaunits;1unitisdefinedastheamountofenzymerequiredtorelease1µmolp-nitrophenyl(inthepresenceofexcessquantitiesofα-glucosidase)in1minat40°C.Inthepresentstudy,15laboratoriesanalyzed16samplesasblindduplicates.Theanalyzedsampleswerewhitewheatflour,whitewheatflourtowhichfungalα-amylasehadbeenadded,milledmalt,andfungalandbacterialenzymepreparations.RepeatABIlityrelativestandarddeviationsrangedfrom1.4to14.4%,andreproducibilityrelativestandarddeviationsrangedfrom5.0to16.7%.
Theeffectofcarbohydratesonα-amylaseactivitymeasurements.
Baks,T.,Janssen,A.E.&Boom,R.M.(2006).EnzymeandMicrobialTechnology,39(1),114-119.
LinktoArticle
ReadAbstract
TheCeralphamethodcanbeusedforα-amylaseactivitymeasurementsduringthehydrolysisofstarchathighsubstrateconcentrations(>40wt.%).However,theresultsareaffectedbythecarbohydratespresentinthesamples.TheeffectofcarbohydratesontheCeralphaα-amylaseactivitymeasurementswasmeasuredoverabroadconcentrationrange.ItwasfoundthatstarchhasthelargestinfluenceandglucosehasthelowestinfluenceontheCeralphaassayprocedure.Theseresultswereexplainedbyconsideringsubstrateinhibitionandsubstratecompetition.Asimplekineticmodelwasusedtodescribetheobservedphenomenaquantitatively.ThismodelwasalsousedtoestimatetheMichaelis–MentenconstantforalargenumberofsubstratesanditrequiresonlyasingleexperimentforeachKmdetermination.
Cross-inhibitoryactivityofcerealproteininhibitorsagainstα-amylasesandxylanases.
Sancho,A.I.,Faulds,C.B.,Svensson,B.,Bartolomé,B.,Williamson,G.&Juge,N.(2003).BiochimicaetBiophysicaActa(BBA)-ProteinsandProteomics,1650(1),136-144.
LinktoArticle
ReadAbstract
Thepurificationandcharacterisationofaxylanaseinhibitor(XIP-I)fromwheatwasreportedpreviously.Inourcurrentwork,XIP-Iisalsodemonstratedtohavethecapacitytoinhibitthetwobarleyα-amylaseisozymes(AMY1andAMY2).XIP-IcompletelyinhibitedtheactivityofAMY1andAMY2towardsinsolubleBlueStarchandasolublehepta-oligosaccharidederivative.Aternarycomplexwasformedbetweeninsolublestarch,acatalyticallyinactivemutantofAMY1(D180A),andXIP-I,suggestingthatthesubstrate–XIP-Iinteractionisnecessaryforinhibitionofbarleyα-amylases.Kivaluesforα-amylaseinhibition,however,couldnotbecalculatedduetothenonlinearnatureoftheinhibitionpattern.Furthermore,surfaceplasmonresonanceandgelelectrophoresisdidnotindicateinteractionbetweenXIP-Iandtheα-amylases.TheinhibitionwasabolishedbyCaCl2,indicatingthatthedrivingforcefortheinteractionisdifferentfromthatofcomplexationbetweenthebarleyα-amylase/subtilisininhibitor(BASI)andAMY2.ThisisthefirstreportofaproteinaceousinhibitorofAMY1.BASI,inaddition,wasdemonstratedtopartiallyinhibittheendo-1,4-β-D-xylanasefromAspergillusniger(XylA)ofglycosidehydrolasefamily11.Takentogether,thedatademonstrateforthefirsttimethedualtargetenzymespecificityofBASIandXIP-Iinhibitorsforxylanaseandα-amylase.
OverexpressionoftheArabidopsissyntaxinPEP12/SYP21inhibitstransportfromtheprevacuolarcompartmenttothelyticvacuoleinvivo.
Foresti,O.,daSilva,L.L.P.&Denecke,J.(2006).ThePlantCell,18(9),2275-2293.
LinktoArticle
ReadAbstract
Golgi-mediatedtransporttothelyticvacuoleinvolvespassagethroughtheprevacuolarcompartment(PVC),butlittleisknownabouthowvacuolarproteinsexitthePVC.WeshowthatthislaststepisinhibitedbyoverexpressionofArabidopsisthalianasyntaxinPEP12/SYP21,causinganaccumulationofsolubleandmembranecargoandtheplantvacuolarsortingreceptorBP80inthePVC.AnterogradetransportproceedsnormallyfromtheendoplasmicreticulumtotheGolgiandthePVC,althoughexportfromthePVCappearstobecompromised,affectingbothanterogrademembraneflowtothevacuoleandtherecyclingrouteofBP80totheGolgi.However,Golgi-mediatedtransportofsolubleandmembranecargotowardtheplasmamembraneisnotaffected,butasolubleBP80ligandispartiallymis-sortedtotheculturemedium.WealsoobserveclusteringofindividualPVCbodiesthatmovetogetherandpossIBLyfusewitheachother,formingenlargedcompartments.WeconcludethatPEP12/SYP21overexpressionspecificallyinhibitsexportfromthePVCwithoutaffectingtheGolgicomplexorcompromisingthesecretorybranchoftheendomembranesystem.TheresultsprovideafunctionalinvivoassaythatconfirmsPEP12/SYP21involvementinvacuolarsortingandindicatesthatexcessofthissyntaxininthePVCcanbedetrimentalforfurthertransportfromthisorganelle.
Vacuolartransportintobaccoleafepidermiscellsinvolvesasinglerouteforsolublecargoandmultipleroutesformembranecargo.
Bottanelli,F.,Foresti,O.,Hanton,S.&Denecke,J.(2011).ThePlantCell,23(8),3007-3025.
LinktoArticle
ReadAbstract
Wetestedifdifferentclassesofvacuolarcargoreachthevacuoleviadistinctmechanismsbyinterferenceatmultiplestepsalongthetransportroute.Weshowthatnucleotide-freemutantsoflowmolecularweightGTPases,includingRab11,theRab5membersRha1andAra6,andthetonoplast-residentRab7,causedinducedsecretionofbothlyticandstoragevacuolarcargo.InsituanalysisinleafepidermiscellsindicatesasequentialactionofRab11,Rab5,andRab7GTPases.ComparedwithRab5members,mutantRab11mediatesanearlytransportdefectinterferingwiththearrivalofcargoatprevacuoles,whilemutantRab7inhibitsthefinaldeliverytothevacuoleandincreasescargolevelsinprevacuoles.Incontrastwithsolublecargo,membranecargomayfollowdifferentroutes.Tonoplasttargetingofanα-TIPchimerawasimpairedbynucleotide-freeRha1,Ara6,andRab7similartosolublecargo.Bycontrast,thetail-anchoredtonoplastSNAREVam3sharesonlytheRab7-mediatedvacuolardepositionstep.ThemostmarkeddifferencewasobservedforthecalcineurinbindingproteinCBL6,whichwasinsensitivetoallRabmutantstested.Unlikesolublecargo,α-TIPandVam3,CBL6transporttothevacuolewasCOPIIindependent.Theresultsindicatethatsolublevacuolarproteinsfollowasingleroutetovacuoles,whilemembranespanningproteinsmayuseatleastthreedifferenttransportmechanisms.
Measurementofα-amylaseactivitybySequentialInjectionAnalysis.
Min,R.W.,Carlsen,M.,Nielsen,J.&Villadsen,J.(1995).BiotechnologyTechniques,9(10),763-766.
LinktoArticle
ReadAbstract
ASequentialInjectionAnalysis(SIA)systemformonitoringα-amylaseactivityisdescribed.TheSIAanalyserisafurtherdevelopmentofpreviouslyinvestigatedFlowInjectionAnalysis(FIA)analyser.Theanalysisofα-amylaseactivityisbasedonmonitoringthedecolorationofaniodine-starchcomplex.PerformancesoftheSIAanalyserhavebeencomparedwiththeFIAanalyser.AgoodagreementhasbeenobtainedbetweentheSIAmeasurementsandtheFIAmeasurements.
Secretion,purification,andcharacterisationofbarleyα-amylaseproducedbyheterologousgeneexpressioninAspergillusniger.
Juge,N.,Svensson,B.&Williamson,G.(1998).AppliedMicroBIOLOGyandBiotechnology,49(4),385-392.
LinktoArticle
ReadAbstract
Efficientproductionofrecombinantbarleyα-amylasehasbeenachievedinAspergillusniger.TheCDNAencodingα-amylaseisozyme1(AMY1)anditssignalpeptidewasplacedunderthecontroloftheAspergillusnidulansglyceraldehyde-3-phosphatedehydrogenase(gpd)promoterandtheA.nidulanstrpCgeneterminator.Secretionyieldsupto60 mg/lwereobtainedinmediaoptimisedforα-amylaseactivityandlowproteaseactivity.TherecombinantAMY1(reAMY1)waspurifiedtohomogeneityandfoundtobeidenticaltonativebarleyAMY1withrespecttosize,pI,andimmunoreactivity.N-terminalsequenceanalysisoftherecombinantproteinindicatedthattheendogenousplantsignalpeptideiscorrectlyprocessedinA.niger.Electrosprayionisation/massspectrometrygaveamolecularmassforthedominantformof44 960 Da,inaccordancewiththelossoftheLQRSC-terminalresidues;glycosylationapparentlydidnotoccur.Theactivitiesofrecombinantandnativebarleyα-amylasesareverysimilartowardsinsolubleandsolublestarchaswellas2-chloro-4-nitrophenolβ-D-maltoheptaosideandamylose(degreeofpolymerisation=17).Barleyα-amylaseisthefirstplantproteinefficientlysecretedandcorrectlyprocessedbyA.nigerusingitsownsignalsequence.
TargetingoftheplantvacuolarsortingreceptorBP80isdependentonmultiplesortingsignalsinthecytosolictail.
daSilva,L.L.P.,Foresti,O.&Denecke,J.(2006).ThePlantCell,18(6),1477-1497.
LinktoArticle
ReadAbstract
Althoughsignalsforvacuolarsortingofsolubleproteinsarewelldescribed,wehaveyettolearnhowtheplantvacuolarsortingreceptorBP80reachesitscorrectdestinationandrecycles.Toshedlightonreceptortargeting,weusedaninvivocompetitionassayinwhichatruncatedreceptor(greenfluorescentprotein-BP80)specificallycompeteswithsortingmachineryandcauseshypersecretionofBP80-ligandsfromtobacco(Nicotianatabacum)leafprotoplasts.WeshowthatboththetransmembranedomainandthecytosolictailofBP80containinformationnecessaryforefficientprogresstotheprevacuolarcompartment(PVC).Furthermore,thetailmustbeexposedonthecorrectmembranesurfacetocompetewithsortingmachinery.Mutationalanalysisofconservedresiduesrevealedthatmultiplesequencemotifsarenecessaryforcompetition,oneofwhichisatypicalTyr-basedmotif(YXXΦ).SubstitutionofTyr-612forAlacausespartialretentionintheGolgiapparatus,mistargetingtotheplasmamembrane(PM),andslowerprogresstothePVC.AroleinGolgi-to-PVCtransportwasconfirmedbygeneratingthecorrespondingmutationonfull-lengthBP80.ThemutantreceptorwaspartiallymistargetedtothePMandinducedthesecretionofacoexpressedBP80-ligand.FurthermutantsindicatethatthecytosolictailislikelytocontainotherinformationbesidestheYXXΦmotif,possiblyforendoplasmicreticulumexport,endocytosisfromthePM,andPVC-to-Golgirecycling.
Isolation,characterizationandinhibitionbyacarboseoftheα-amylasefromLactobacillusfermentum:comparisonwithLb.manihotivoransandLb.plantarumamylases.
Talamond,P.,Desseaux,V.,Moreau,Y.,Santimone,M.&Marchis-Mouren,G.(2002).ComparativeBiochemistryandPhysiologyPartB:BiochemistryandMolecularBiology,133(3),351-360.
LinktoArticle
ReadAbstract
Extracellularα-amylasefromLactobacillusfermentum(FERMENTA)waspurifiedbyglycogenprecipitationandionexchangechromatography.Thepurificationwasapproximately28-foldwitha27%yield.TheFERMENTAmolecularmass(106000Da)isinthesamerangeastheonesdeterminedforL.amylovorus(AMYLOA),L.plantarum(PLANTAA)andL.manihotivorans(MANIHOA)α-amylases.TheaminoacidcompositionofFERMENTAdiffersfromtheotherlactobacilliconsideredhere,buthowever,indicatesthatthepeptidicsequencecontainstwoequalparts:theN-terminalcatalyticpart;andtheC-terminalrepeats.TheisoelectricpointofFERMENTA,PLANTAA,MANIHOAareapproximatelythesame(3.6).TheFERMENTAoptimumpH(5.0)isslightlymoreacidicandtheoptimumtemperatureislower(40°C).Rawstarchhydrolysiscatalyzedbyallthreeamylasesliberatesmaltotrioseandmaltotretaose.MaltoseisalsoproducedbyFERMENTAandMANIHOA.MaltohexaoseFERMENTAcatalyzedhydrolysisproducesmaltoseandmaltotriose.Finally,kineticsofFERMENTA,PLANTAAandMANIHOAusingamyloseasasubstrateandacarboseasaninhibitor,werecarriedout.Statisticalanalysisofkineticdata,expressedusingageneralvelocityequationandassumingrapidequilibrium,showedthat:(1)intheabsenceofinhibitorkcat/Kmare,respectively,1×109,12.6×109and3.2×109s-1M-1;and(2)theinhibitionofFERMENTAisofthemixednon-competitivetype(K1i=5.27µM;L1i=1.73µM)whiletheinhibitionofPLANTAAandMANIHOAisoftheuncompetitivetype(L1i=1.93µMand1.52µM,respectively).Whatevertheinhibitiontype,acarboseisastronginhibitoroftheseLactobacillusamylases.Theseresultsindicatethat,asfoundinporcineandbarleyamylases,Lactobacillusamylasescontaininadditiontotheactivesite,asolublecarbohydrate(substrateorproduct)bindingsite.
Theactivityofbarleyα-amylaseonstarchgranulesisenhancedbyfusionofastarchbindingdomainfromAspergillusnigerglucoamylase.
Juge,N.,Nøhr,J.,LeGal-Coëffet,M.F.,Kramhøft,B.,Furniss,C.S.,Planchot,V.,Archer,D.B.,Willianson,G.&Svensson,B.(2006).BiochimicaetBiophysicaActa(BBA)-ProteinsandProteomics,1764(2),275-284.
LinktoArticle
ReadAbstract
Highaffinityforstarchgranulesofcertainamylolyticenzymesismediatedbyaseparatestarchbindingdomain(SBD).InAspergillusnigerglucoamylase(GA-I),a70aminoacidO-glycosylatedpeptidelinkerconnectsSBDwiththecatalyticdomain.Agenewasconstructedtoencodebarleyα-amylase1(AMY1)fusedC-terminallytothisSBDviaa37residueGA-Ilinkersegment.AMY1-SBDwasexpressedinA.niger,secretedusingtheAMY1signalsequenceat25mg×L-1andpurifiedin50%yield.AMY1-SBDcontained23%carbohydrateandconsistedofcorrectlyN-terminallyprocessedmultipleformsofisoelectricpointsintherange4.1–5.2.ActivityandapparentaffinityofAMY1-SBD(50nM)forbarleystarchgranulesof0.034U×nmol-1andKd=0.13mg×mL-1,respectively,werebothimprovedwithrespecttothevalues0.015U×nmol-1and0.67mg×mL-1forrAMY1(recombinantAMY1producedinA.niger).AMY1-SBDshoweda2-foldincreasedactivityforsolublestarchatlow(0.5%)butnotathigh(1%)concentration.AMY1-SBDhydrolysedamyloseDP440withanincreaseddegreeofmultipleattackof3comparedto1.9forrAMY1.Remarkably,atlowconcentration(2nM),AMY1-SBDhydrolysedbarleystarchgranules15-foldfasterthanrAMY1,whilehigheramountsofAMY-SBDcausedmolecularovercrowdingofthestarchgranulesurface.
Impactofformulationandtechnologicalfactorsontheacrylamidecontentofwheatbreadandbreadrolls.
Claus,A.,Mongili,M.,Weisz,G.,Schieber,A.&Carle,R.(2008).JournalofCerealScience,47(3),546-554.
LinktoArticle
ReadAbstract
Thisstudyclearlydemonstratesthatformulationandbakingtechnologyhavestronginfluenceontheacrylamidecontentinthebakedproducts.NaClplaysanambiguousrole:Whereaslowdosesupto2%loweredacrylamidebyinhibitionoftheenzymeactivities,higheradditionremarkablyincreasedthecontentsduetogrowthinhibitionoftheyeast.Theresultsofpreviousmodelstudiesconcerningtheinfluenceofcysteinecouldbeconfirmedinpilotplantexperiments.Itsadditiontothedoughresultedinsignificantlyloweracrylamidecontentwhereasitsapplicationtothecrustprovedtobeineffective.Furthermore,itwasdemonstratedthatenzyme-bearingbakeryimprovershadnoinfluenceonacrylamideformation.Inpilotplantexperimentsacrylamidewasreducedwithincreasingfermentationtime,andminimumacrylamidelevelswerealreadyreachedafter60minthusavoidingflattenedbreadsduetoprolongedamylaseactivity.Besidesformulationandfermentationalsoprocesstechnologyiscrucial.Asshownbyourdata,reducedbakingtemperatureandprolongedheattreatmentisfavorable.Furthermore,convectionovensseemtoenhanceacrylamideformationcomparedtodeckoven.
Heterologousexpressionofanα-amylaseinhibitorfromcommonbean(Phaseolusvulgaris)inKluyveromyceslactisandSaccharomycescerevisiae.
Brain-Isasi,S.,Álvarez-Lueje,A.&Higgins,T.J.V.(2017).MicrobialCellFactories,16(1),110.
LinktoArticle
ReadAbstract
Background:Phaseolaminorα-amylaseinhibitor1(αAI)isaglycoproteinfromcommonbeans(PhaseolusvulgarisL.)thatinhibitssomeinsectandmammalianα-amylases.SeveralclinicalstudiessupportthebeneficialuseofbeanαAIforcontrolofdiabetesandobesity.CommercialextractsofP.vulgarisareavailablebuttheirefficacyisstillunderquestion,mainlybecausesomeoftheseextractscontainantinutritionalimpuritiesnaturallypresentinbeanseedsandalsoexhibitalowerspecificactivityαAI.TheproductionofrecombinantαAIallowstoovercomethesedisadvantagesandprovidesaplatformforthelarge-scaleproductionofpureandfunctionalαAIproteinforbiotechnologicalandpharmaceuticalapplications.Results:AsyntheticgeneencodingαAIfromthecommonbean(Phaseolusvulgariscv.Pinto)wascodon-optimisedforexpressioninyeasts(αAI-OPT)andclonedintotheproteinexpressionvectorspKLAC2andpYES2.TheyeastsKluyveromyceslactisGG799(andproteasedeficientderivativessuchasYCT390)andSaccharomycescerevisiaeYPH499weretransformedwiththeoptimisedgenesandtransformantswerescreenedforexpressionbyantibodydotblot.RecombinantcoloniesofK.lactisYCT390thatexpressedandsecretedfunctionalαAIintotheculturesupernatantswereselectedforfurtheranalyses.RecombinantαAIfromK.lactisYCT390waspurifiedusinganion-exchangeandaffinityresinsleADIngtotherecoveryofafunctionalinhibitor.TheidentityofthepurifiedαAIwasconfirmedbymassspectrometry.RecombinantclonesofS.cerevisiaeYPH499expressedfunctionalαAIintracellularly,butdidnotsecretetheprotein.Conclusions:Thisisthefirstreportdescribingtheheterologousexpressionoftheα-amylaseinhibitor1(αAI)fromP.vulgarisinyeasts.WedemonstratedthatrecombinantstrainsofK.lactisandS.cerevisiaeexpressedandprocessedtheαAIprecursorintomatureandactiveproteinandalsoshowedthatK.lactissecretesfunctionalαAI.
AnalysisofNanobody–EpitopeInteractionsinLivingCellsviaQuantitativeProteinTransportAssays.
Früholz,S.&Pimpl,P.(2017).PlantProteinSecretion,MethodsinMolecularBiology,1662,pp.171-182,HumanaPress,NewYork,NY.
LinktoArticle
ReadAbstract
Overthepastfewdecades,quantitativeproteintransportanalyseshavebeenusedtoelucidatethesortingandtransportofproteinsintheendomembranesystemofplants.Here,wehaveappliedourknowledgeabouttransportroutesandthecorrespondingsortingsignalstoestablishaninvivosystemfortestingspecificinteractionsbetweensolubleproteins.Here,wedescribetheuseofquantitativeproteintransportassaysintobaccomesophyllprotoplaststotestforinteractionsoccurringbetweenaGFP-bindingnanobodyanditsGFPepitope.Forthis,weuseasecretedGFP-taggedα-amylaseasareportertogetherwithavacuolar-targetedRFP-taggednanobody.Theinteractionbetweentheseproteinsisthenrevealedbyatransportalterationofthesecretoryreporterduetotheinteraction-triggeredattachmentofthevacuolarsortingsignal.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们