α-D-galactosidaseactivityandgalactomannanandgalactosylsucroseoligosaccharidedepletioningerminatinglegumeseeds.
McCleary,B.V.&Matheson,N.K.(1974).Phytochemistry,13(9),1747-1757.
LinktoArticle
ReadAbstract
Germinatingseedsoflucerne,guar,carobandsoybeaninitiallydepletedraffinoseseriesoligosaccharidesandthengalactomannan.Thisdepletionwasaccompaniedbyarapidincreaseandthenadecreaseinα-galactosidaselevels.Lucerneandguarcontainedtwoα-galactosidaseactivities,carobthreeandsoybeanfour.Oneoftheseineachplant,fromitslocationintheendosperm,timeofappearanceandkineticbehaviour,appearedtobeprimarilyinvolvedingalactomannanhydrolysis.ThisenzymeinlucernehadMWof23000andcouldnotbeseparatedfromβ-mannanaseby(NH4)2SO4fractionation,DEAE,CMorSE-cellulosechromatographyorgelfiltration,butonlybypolyacrylamidegelelectrophoresis.Inguar,carobandsoybean,itcouldbeseparatedbyion-exchangechromatographyandgelfiltration.Inlucerne,carobandguarmostofthetotalincreaseinactivitywasduetothisenzyme.Theotherα-galactosidaseshadMWsofabout35000andcouldbeseparatedfromβ-mannanasebydissection,ionexchangecellulosechromatographyandgelfiltration.Theywerelocatedinthecotyledon-embryoandappearedtobeprimarilyinvolvedingalactosylsucroseoligosaccharidehydrolysis.
Galactomannanstructureandβ-mannanaseandβ-mannosidaseactivityingerminatinglegumeseeds.
McCleary,B.V.&Matheson,N.K.(1975).Phytochemistry,14(5-6),1187-1194.
LinktoArticle
ReadAbstract
Structuralchangesingalactomannanongerminationoflucerne,carob,honeylocust,guarandsoybeanseeds,asmeasuredbyviscosity,elutionvolumesongelfiltrationandultra-centrifugationwereslightconsistentwitharapidandcompletehydrolysisofamoleculeoncehydrolysisofthemannanchainstarts.β-Mannanaseactivityincreasedandthendecreased,parallelinggalactomannandepletion.Multipleformsofβ-mannanasewereisolatedandthesewerelocatedintheendosperm.β-Mannanasehadlimitedabilitytohydrolysegalactomannanswithhighgalactosecontents.Seedscontainingthesegalactomannanshadveryactiveα-galactosidases.β-Mannosidaseswerepresentinbothendospermandcotyledon-embryoandcouldbeseparatedchromatographically.Thelevelofactivitywasjustsufficienttoaccountformannoseproductionfrommanno-oligosaccharides.
Galactomannansandagalactoglucomannaninlegumeseedendosperms:Structuralrequirementsforβ-mannanasehydrolysis.
McCleary,B.V.,Matheson,N.K.&Small,D.B.(1976).Phytochemistry,15(7),1111-1117.
LinktoArticle
ReadAbstract
Aseriesofgalactomannanswithvaryingdegreesofgalactosesubstitutionhavebeenextractedfromtheendospermsoflegumeseedswithwaterandalkaliandtheamountofsubstitutionrequiredforwatersolubilityhasbeendetermined.Somewereheterogeneouswithrespecttothedegreeofgalactosesubstitution.Thestructuralrequirementsforhydrolysisbyplantβ-mannanasehavebeenstudiedusingtherelativeratesandextentsofhydrolysisofthesegalactomannans.Amoredetailedexaminationoftheproductsofhydrolysisofcarobgalactomannanhasbeenmade.Atleasttwocontiguousanhydromannoseunitsappeartobeneededforscission.Thisissimilartotherequirementforhydrolysisbymicrobialenzymes.Judastree(Cercissiliquastrum)endospermcontainedapolysaccharidewithauniquecompositionforalegumeseedreserve.Gelchromatographyandelectrophoresisoncelluloseacetateindicatedhomogeneity.Hydrolysiswithamixtureofβ-mannanaseandα-galactosidasegaveaglucose-mannosedisaccharideandacetolysisgaveagalactose-mannose.Theseresults,aswellasthepatternofhydrolysisbyβ-mannanasewereconsistentwithagalactoglucomannanstructure.
Modesofactionofβ-mannanaseenzymesofdiverseoriginonlegumeseedgalactomannans.
McCleary,B.V.(1979).Phytochemistry,18(5),757-763.
LinktoArticle
ReadAbstract
β-MannanaseactivitiesinthecommercialenzymepreparationsDriselaseandCellulase,inculturesolutionsofBacillussubtilis(TX1),incommercialsnailgut(Helixpomatia)preparationsandingerminatedseedsoflucerne,Leucaenaleucocephalaandhoneylocust,havebeenpurifiedbysubstrateaffinitychromatographyonglucomannan-AH-Sepharose.Onisoelectricfocusing,multipleproteinbandswerefound,allofwhichhadβ-mannanaseactivity.EachpreparationappearedasasinglemajorbandonSDS-polyacrylamidegelelectrophoresis.Theenzymesvariedintheirfinalspecificactivities,Kmvalues,optimalpH,isoelectricpointsandpHandtemperaturestabilitiesbuthadsimilarMWs.Theenzymeshavedifferentabilitiestohydrolysegalactomannanswhicharehighlysubstitutedwithgalactose.ThepreparationsDriselaseandCellulasecontainβ-mannanaseswhichcanattackhighlysubstitutedgalactomannansatpointsofsingleunsubstitutedD-mannosylresiduesiftheD-galactoseresiduesinthevicinityofthebondtobehydrolysedareallononlyonesideofthemainchain.
AnenzymictechniqueforthequantitationofgalactomannaninguarSeeds.
McCleary,B.V.(1981).Lebensmittel-Wissenschaft&Technologie,14,56-59.
LinktoArticle
ReadAbstract
Anenzymictechniquehasbeendevelopedfortherapidandaccuratequantitationofthegalactomannancontentofguarseedsandmillingfractions.Thetechniqueinvolvesthemeasurementofthegalactosecomponentofgalactomannansusinggalactosedehydrogenase.Thegalactomannansareconvertedtogalactoseandmanno-oligosaccharidesusingpartiallypurifiedenzymesfromacommercialpreparationandfromgerminatedguarseeds.Simpleprocedureshavebeendevisedforthepreparationoftheseenzymes.Applicationofthetechniquetoanumberofguarvarietiesgavevaluesforthegalactomannancontentrangingfrom22.7to30.8%ofseedweight.
Purificationandpropertiesofaβ-D-mannosidemannohydrolasefromguar.
McCleary,B.V.(1982),CarbohydrateResearch,101(1),75-92.
LinktoArticle
ReadAbstract
Aβ-D-mannosidemannohydrolaseenzymehasbeenpurifiedtohomogeneityfromgerminatedguar-seeds.Difficultiesassociatedwiththeextractionandpurificationappearedtobeduetoaninteractionoftheenzymewithotherproteinmaterial.Thepurifiedenzymehydrolysedvariousnaturalandsyntheticsubstrates,includingβ-D-manno-oligosaccharidesandreducedβ-D-manno-oligosaccharidesofdegreeofpolymerisation2to6,aswellasp-nitrophenyl,naphthyl,andmethylumbelliferylβ-D-mannopyranosides.Thepreferred,naturalsubstratewasβ-D-mannopentaose,whichwashydrolysedattwicetherateofβ-D-mannotetraoseandfivetimestherateofβ-D-mannotriose.Thisresult,togetherwiththeobservationthatα-D-mannoseisreleasedonhydrolysis,indicatesthattheenzymeisanexo-β-D-mannanase.
Preparative–scaleisolationandcharacterisationof61-α-D-galactosyl-(1→4)-β-D-mannobioseand62-α-D-galactosyl-(1→4)-β-D-mannobiose.
McCleary,B.V.,Taravel,F.R.&Cheetham,N.W.H.(1982).CarbohydrateResearch,104(2),285-297.
LinktoArticle
ReadAbstract
N.m.r.,enzymic,andchemicaltechniqueshavebeenusedtocharacterisetheD-galactose-containingtri-andtetra-saccharidesproducedonhydrolysisofcaroband
L.leucocephalaD-galacto-D-mannansbyDriselaseβ-D-mannanase.Theseoligosaccharideswereshowntobeexclusively6
1-α-D-galactosyl-β-D-mannobioseand6
1-α-D-galactosyl-β-D-mannotriose.Fur
Thermore,theseweretheonlyD-galactose-containingtri-andtetra-saccharidesproducedonhydrolysisofcarobD-galacto-D-mannanbyβ-D-mannanasesfromothersources,including
Bacillussubtilis,
Aspergillusniger,
Helixpomatiagutsolution,andgerminatedlegumes.Acidhydrolysisoflucernegalactomannanyielded6
1-α-D-galactosyl-β-D-mannobioseand6
2-α-D-galactosyl-β-D-mannobiose.
β-D-mannosidasefromHelixpomatia.
McCleary,B.V.(1983).CarbohydrateResearch,111(2),297-310.
LinktoArticle
ReadAbstract
β-D-Mannosidase(β-D-mannosidemannohydrolaseEC3.2.1.25)waspurified160-foldfromcrudegut-solutionof
Helixpomatiabythreechromatographicstepsandthengaveasingleproteinband(mol.wt.94,000)onSDS-gelelectrophoresis,andthreeproteinbands(ofalmostidenticalisoelectricpoints)onthin-layeriso-electricfocusing.Eachoftheseproteinbandshadenzymeactivity.Thespecificactivityofthepurifiedenzymeon
p-nitrophenylβ-D-mannopyranosidewas1694nkat/mgat40°anditwasdevoidofα-D-mannosidase,β-D-galactosidase,2-acet-amido-2-deoxy-D-glucosidase,(1→4)-β-D-mannanase,and(1→4)-β-D-glucanaseactivities,almostdevoidofα-D-galactosidaseactivity,andcontaminatedwith<0.02% of="" β-d-glucosidase="" activity.="" the="" purified="" enzyme="" had="" the="" same="">0.02%>
Kmforborohydride-reducedβ-D-manno-oligosaccharidesofd.p.3-5(12.5mM).Theinitialrateofhydrolysisof(1→4)-linkedβ-D-manno-oligosaccharidesofd.p.2-5andofreducedβ-D-manno-oligosaccharidesofd.p.3-5wasthesame,and
o-nitrophenyl,methylumbelliferyl,andnaphthylβ-D-mannopyranosideswerere
ADIlyhydrolysed.β-D-Mannobiosewashydrolysedatarate~25timesthatof6
1-α-D-galactosyl-β-D-mannobioseand6
3-α-D-galactosyl-β-D-mannotetraose,andat~90timestherateforβ-D-mannobi-itol.
Enzymicinteractionsinthehydrolysisofgalactomannaningerminatingguar:Theroleofexo-β-mannanase.
McCleary,B.V.(1983).Phytochemistry,22(3),649-658.
LinktoArticle
ReadAbstract
Hydrolysisofgalactomannaninendospermsofgerminatingguarisduetothecombinedactionofthreeenzymes,α-galactosidase,β-mannanaseandexo-β-mannanase.α-Galactosidaseandexo-β-mannanaseactivitiesoccurbothinendospermandcotyledontissuebutβ-mannanaseoccursonlyinendosperms.Onseedgermination,β-mannanaseandendospermicα-galactosidasearesynthesizedandactivitychangesparallelgalactomannandegradation.Galactomannandegradationandsynthesisofthesetwoenzymesareinhibitedbycycloheximide.Incontrast,endospermicexo-β-mannanaseisnotsynthesizedonseedgermination,butratherisalreadypresentthroughoutendospermtissue.Ithasnoactiononnativegalactomannan.α-Galactosidase,β-mannanaseandexo-β-mannanasehavebeenpurifiedtohomogeneityandtheirseparateandcombinedactioninthehydrolysisofgalactomannanandeffectontherateofuptakeofcarbohydratebycotyledons,studied.Resultsobtainedindicatedthatthesethreeactivitiesaresufficienttoaccountforgalactomannandegradationinvivoand,further,thatallthreearerequired.Cotyledonscontainanactiveexo-β-mannanaseandsugar-uptakeexperimentshaveshownthatcotyledonscanabsorbmannobioseintact,indicatingthatthisenzymeisinvolvedinthecompletedegradationofgalactomannanonseedgermination.
Characterisationoftheoligosaccharidesproducedonhydrolysisofgalactomannanwithβ-D-mannase.
McCleary,B.V.,Nurthen,E.,Taravel,F.R.&Joseleau,J.P.(1983).CarbohydrateResearch,118,91-109.
LinktoArticle
ReadAbstract
Treatmentofhot-water-solublecarobgalactomannanwithβ-D-mannanasesfromA.nigerorlucerneseedaffordsanarrayofD-galactose-containingβ-D-mannosaccharidesaswellasβ-D-manno-biose,-triose,and-tetraose(lucerne-seedenzymeonly).TheD-galactose-containingβ-D-mannosaccharidesofd.p.3–9producedbyA.nigerβ-D-mannanasehavebeencharacterised,usingenzymic,n.m.r.,andchemicaltechniques,as61-α-D-galactosyl-β-D-mannobiose,61-α-D-galactosyl-β-D-mannotriose,63,64-di-α-D-galactosyl-β-D-mannopentaose(theonlyheptasaccharide),and63,64-di-α-D-galactosyl-β-D-mannohexaose,64,65-di-α-D-galactosyl-β-D-mannohexaose,and61,63,64-tri-α-D-galactosyl-β-D-mannopentaose(theonlyoctasaccharides).Fournonasaccharideshavealsobeencharacterised.Penta-andhexa-saccharideswereabsent.Lucerne-seedβ-D-mannanaseproducedthesamebranchedtri-,tetra-andhepta-saccharides,andalsopenta-andhexa-saccharidesthatwerecharacterisedas61-α-D-galactosyl-β-D-mannotetraose,63-α-D-galactosyl-β-D-mannotetraose,61,63-di-α-D-galactosyl-β-D-mannotetraose,63-α-D-galactosyl-β-D-mannopentaose,and64-α-D-galactosyl-β-D-mannopentaose.NoneoftheoligosaccharidescontainedaD-galactosestubontheterminalD-mannosylgroupnorweretheysubstitutedonthesecondD-mannosylresiduefromthereducingterminal.
Actionpatternsandsubstrate-bindingrequirementsofβ-D-mannanasewithmannosaccharidesandmannan-typepolysaccharides.
McCleary,B.V.&Matheson,N.K.(1983).CarbohydrateResearch,119,191-219.
LinktoArticle
ReadAbstract
Purified(1→4)-β-D-mannanasefromAspergillusnigerandlucerneseedshasbeenincubatedwithmannosaccharidesandend-reduced(1→4)-β-D-mannosaccharidesand,fromtheproductsofhydrolysis,acyclicreaction-sequencehasbeenproposed.Fromtheheterosaccharidesreleasedbyhydrolysisofthehot-water-solublefractionofcarobgalactomannanbyA.nigerβ-D-mannanase,apatternofbindingbetweentheβ-D-mannanchainandtheenzymehasbeendeduced.Theproductsofhydrolysiswiththeβ-D-mannanasesfromIrpexlacteus,Helixpomatia,Bacillussubtilis,andlucerneandguarseedshavealsobeendetermined,andthedifferencesfromtheactionofA.nigerβ-D-mannanaserelatedtominordifferencesinsubstratebinding.Theproductsofhydrolysisofglucomannanareconsistentwiththoseexpectedfromthebindingpatternproposedfromthehydrolysisofgalactomannan.
Thefinestructuresofcarobandguargalactomannans.
McCleary,B.V.,Clark,A.H.,Dea,I.C.M.&Rees,D.A.(1985).CarbohydrateResearch,139,237-260.
LinktoArticle
ReadAbstract
ThedistributionofD-galactosylgroupsalongtheD-mannanbackbone(finestructure)ofcarobandguargalactomannanshasbeenstudiedbyacomputeranalysisoftheamountsandstructuresofoligosaccharidesreleasedonhydrolysisofthepolymerswithtwohighlypurifiedβ-D-mannanasesisolatedfromgerminatedguarseedandfromAspergillusnigercultures.Computerprogrammesweredevelopedwhichaccountedforthespecificsubsite-bindingrequirementsoftheβ-D-mannanasesandwhichsimulatedthesynthesisofgalactomannanbyprocessesinwhichtheD-galactosylgroupsweretransferredtothegrowingD-mannanchainineitherastatisticallyrandommannerorasinfluencedbynearest-neighbour/second-nearest-neighboursubstitution.Suchamodelwaschosenasitisconsistentwiththeknownpatternofsynthesisofsimilarpolysaccharides,forexample,xyloglucan;also,additiontoapreformedmannanchainwouldbeunlikely,duetotheinsolublenatureofsuchpolymers.TheD-galactosedistributionincarobgalactomannanandinthehot-andcold-water-solublefractionsofcarobgalactomannanhasbeenshowntobenon-regular,withahighproportionofsubstitutedcouplets,lesseramountsoftriplets,andanabsenceofblocksofsubstitution.TheprobabilityofsequencesinwhichalternateD-mannosylresiduesaresubstitutedislow.TheprobabilitydistributionofblocksizesforunsubstitutedD-mannosylresiduesindicatesthatthereisahigherproportionofblocksofintermediatesizethanwouldbepresentinagalactomannanwithastatisticallyrandomD-galactosedistribution.Basedonthealmostidenticalpatternsofamountsofoligosaccharidesproducedonhydrolysiswithβ-D-mannanase,itappearsthatgalactomannansfromseedofawiderangeofcarobvaritieshavethesamefine-structure.TheD-galactosedistributioninguar-seedgalactomannanalsoappearstobenon-regular,andgalactomannansfromdifferentguar-seedvarietiesappeartohavethesamefine-structure.
Effectofgalactose-substitution-patternsontheinteractionpropertiesofgalactomannas.
Dea,I.C.M.,Clark,A.H.&McCleary,B.V.(1986).CarbohydrateResearch,147(2),275-294.
LinktoArticle
ReadAbstract
ArangeofgalactomannansvaryingwidelyinthecontentsofD-galactosehavebeencomparedforself-associationandtheirinteractionpropertieswithagaroseandxanthan.Whereas,ingeneral,themostinteractivegalactomannansarethoseinwhichthe(1→4)-β-D-mannanchainisleastsubstitutedbyα-D-galactosylstubs,evidenceispresentedwhichindicatesthatthedistributionofD-galactosylgroupsalongthebackbone(finestructure)canhaveasignificanteffectontheinteractionproperties.Forgalactomannanscontaining<30% of="" d-galactose,="" those="" which="" contain="" a="" higher="" frequency="" of="" unsubstituted="" blocks="" of="" intermediate="" length="" in="" the="" β-d-mannan="" chain="" are="" most="" interactive.="" for="" galactomannans="" containing="">40%ofD-galactose,thosewhichcontainahigherfrequencyofexactlyalternatingregionsintheβ-D-mannanchainaremostinteractive.Thisselectivity,onthebasisofgalactomannanfine-structure,inmixedpolysaccharideinteractions
invitrocouldmimictheselectivityofbindingofbranchedplant-cell-wallpolysaccharidesin
BIOLOGicalsystems.30%>
Effectofthemolecularfinestructureofgalactomannansontheirinteractionproperties-theroleofunsubstitutedsides.
Dea,I.C.M.,Clark,A.H.&McCleary,B.V.(1986).FoodHydrocolloids,1(2),129-140.
LinktoArticle
ReadAbstract
ArangeofgalactomannansvaryingwidelyinthecontentofD-galactosehavebeencomparedforself-association,andtheirinteractionpropertieswithagaroseandxanthan.TheresultspresentedindicatethatingeneralthemostinteractivegalactomannansarethoseinwhichtheD-mannanmainchainbearsfewestD-galactosestubs,andconfirmthatthedistributionofD-galactosegroupsalongthemainchaincanhaveasignificanteffectontheinteractivepropertiesofthegalactomannans.Ithasbeenshownthatfreeze—thawprecipitationofgalactomannansrequiresregionsoftotallyunsubstitutedD-mannoseresiduesalongthemainchain,andthatathresholdforsignificantfreeze—thawprecipitationoccursataweight-averagelengthoftotallyunsubstitutedresiduesofapproximatelysix.ForgalactomannanshavingstructuresabovethisthresholdtheirinteractivepropertieswithotherpolysaccharidesarecontrolledbystructuralfeaturesassociatedwithtotallyunsubstitutedregionsoftheD-mannanbackbone.Incontrast,forgalactomannansbelowthisthreshold,theirinteractivepropertiesarecontrolledbystructuralfeaturesassociatedwithunsubstitutedsidesofD-mannanbackbone.
GalactomannanchangesindevelopingGleditsiaTriacanthosSeeds.
McCleary,B.V.,Mallett,I.&Matheson,N.K.(1987).Phytochemistry,26(7),1889-1894.
LinktoArticle
ReadAbstract
Galactomannanhasbeenextractedfromtheendospermofseedsof
Gleditsiatriacanthos(honeylocust)atdifferentstagesofdevelopment,whentheseedwasaccumulatingstoragematerial.Propertiesofthedifferentsampleshavebeenstudied.Themolecularsizedistributionbecamemoredisperseasgalactomannanaccumulatedandthegalactose:mannoseratiodecreasedslightly.Someposs
IBLereasonsforthesechangesarediscussed.
Relationshipofgrainfructancontenttodegreeofpolymerisationindifferentbarleys.
Nemeth,C.,Andersson,A.A.M.,Andersson,R.,Mangelsen,E.,Sun,C.&Åman,P.(2014).FoodandNutritionSciences,5,581-589.
LinktoArticle
ReadAbstract
Fructansareimportantinthesurvivalofplantsandalsovaluableforhumansaspotentiallyhealthpromotingfoodingredients.Inthisstudyfructancontentandcompositionweredeterminedingrainsof20barleybreedinglinesandcultivarswithawidevariationinchemicalcomposition,morphologyandcountryoforigin,grownatonesiteinChile.Therewassignificantgenotypicvariationingrainfructancontentrangingfrom0.9%to4.2%ofgraindryweight.Fructandegreeofpolymerisation(DP)wasanalysedusinghigh-performanceanion-exchangechromatographywithpulsedamperometricdetection(HPAEC-PAD).Changesinthedistributionofdifferentchainlengthsandthepatternofstructuresoffructanweredetectedwithincreasingamountoffructaninthedifferentbarleys.Apositivecorrelationwasfoundbetweenfructancontentandtherelativeamountoflongchainfructan(DP>9)(r=0.54,p=0.021).Ourresultsprovideabasisforselectingpromisingbarleylinesandcultivarsforfurtherresearchonfructaninbarleybreedingwiththeaimtoproducehealthyfoodproducts.
GenotypicvariationinwheatgrainfructancontentrevealedbyasimplifiedHPLCmethod.
Huynh,B.L.,Palmer,L.,Mather,D.E.,Wallwork,H.,Graham,R.D.,Welch,R.M.&Stangoulis,J.C.R.(2008).JournalofCerealScience,48(2),369-378.
LinktoArticle
ReadAbstract
Fructansareprebiotics,withpotentiallybeneficialeffectsonhumanhealth.Thisstudyaimedtoexaminegeneticvariationinwheatgrainfructancontentusingasimplifiedanalyticalmethod.Themethodinvolvesextractingfructansfromwheatgrainfollowedbyenzymatichydrolysistobreakdownfructansintomonosaccharidesthatcanthenbequantitativelymeasuredbyanion-exchangeliquidchromatographycoupledwithpulsedamperometricdetection.Themodifiedprocedureisreliableandallowsthehandlingoflargenumbersoffloursamplesatalowcost,andcouldthereforebeusefulforassessinglargenumbersofwheatbreedinglines.Usingthismethod,grainsamplestakenfrom19breadwheatcultivarsandbreedinglinesgrowninbothglasshouseandthefieldwereanalysedforgrainfructancontent.Inaddition,grainsamplesof29internationalwheatlandracesand14newwheatbreedinglinesfromtheInternationalMaizeandWheatImprovementCenter(CIMMYT)weresurveyedfortheirfructancontents.Therewassignificantgenotypicvariationamongthesematerials,withgrainfructancontentrangingfrom0.7to2.9%ofgraindryweight.Therewasnoevidenceofstronggenotype-by-environmentinteraction;thefructancontentsoffield-growngrainsampleswerepositivelycorrelated(r=0.83)withthoseofglasshouse-grownsamplesofthesamecultivars.ItshouldthereforebepossibletoinvestigatethegeneticcontrolofvariationforthistraitusingthesimplifiedHPLCmethodandtoselecteffectivelyforincreasedgrainfructancontentinwheatbreeding.
Methodforthedirectdeterminationofavailablecarbohydratesinlow-carbohydrateproductsusinghigh-performanceanionexchangechromatography.
Ellingson,D.,Potts,B.,Anderson,P.,Burkhardt,G.,Ellefson,W.,Sullivan,D.,Jacobs,W.&Ragan,R.(2010).JournalofAOACInternational,93(6),1897-1904.
LinktoArticle
ReadAbstract
Animprovedmethodfordirectdeterminationofavailablecarbohydratesinlow-levelproductshasbeendevelopedandvalidatedforalow-carbohydratesoyinfantformula.Themethodinvolvesmodificationofanexistingdirectdeterminationmethodtoimprovespecificity,accuracy,detectionlevels,andruntimesthroughamoreextensiveenzymaticdigestiontocaptureallavailable(orpotentiallyavailable)carbohydrates.Thedigestionhydrolyzesallcommonsugars,starch,andstarchderivativesdowntotheirmonosaccharidecomponents,glucose,fructose,andgalactose,whicharethenquantitatedbyhigh-performanceanion-exchangechromatographywithphotodiodearraydetection.Methodvalidationconsistedofspecificitytestingand10daysofanalyzingvariousspikelevelsofmixedsugars,maltodextrin,andcornstarch.TheoverallRSDwas4.0acrossallsampletypes,whichcontainedwithin-dayandday-to-daycomponentsof3.6and3.4,respectively.Overallaveragerecoverywas99.4(n=10).Averagerecoveryforindividualspikedsamplesrangedfrom94.1to106(n=10).Itisexpectedthatthemethodcouldbeappliedtoavarietyoflow-carbohydratefoodsandbeverages.
Characterisationofdietaryfibrecomponentsinryeproducts.
Rakha,A.,Åman,P.&Andersson,R.(2010).FoodChemistry,119(3),859-867.
LinktoArticle
ReadAbstract
Inthisstudy,dietaryfibre(DF)wascharacterisedinryeproductsfromalocalsupermarket.SoftbreadsgenerallyhadlowerDFcontents(8–18%)thanhadcrispbreads(13–20%)duetohighinclusionofwheatflour.Forsomeproducts,thelabelledDFvaluescontainedfructan,butothersdidnot.However,formostproducts,theDFvaluesanalysedexceededthosedeclared.Arabinoxylan(AX)andfructanweregenerallythemainDFcomponentsintheproducts,followedbycelluloseandresistantstarch,β-glucan,Klasonligninandarabinogalactan.Inthesoftbreads,celluloseandresistantstarchconcentrationswererelativelyhigh,duetosignificantformationofresistantstarch.Duringbreadmanufacturing,themolecularweightofβ-glucanwashighlydegraded,whilethatofAXwasmoreresistant.Extrudedproductshadthehighestβ-glucanextractabilityandtheextractedβ-glucanretaineditsmolecularweightmost,whichmaybeofnutritionalsignificance.Inryemillingfractions,about50%ofthefructancontentanalysedhadadegreeofpolymerisationbelow10,i.e.itcomprisedoligosaccharides.ThecrispbreadsproducedwithoutyeasthadthehighestDFandfructancontentsandthehighestproportionoflow-molecularweightfructan.Theseresultsindicatethat,duringbread-making,thelow-molecularweightfractionoffructanwasmostavailablefordegradationbyyeastorbyendogenousenzymespresentintheingredients.
Waxyendospermaccompaniesincreasedfatandsaccharidecontentsinbreadwheat(Triticumaestivum)grain.
Yasui,T.&Ashida,K.(2011).Journalofcerealscience,53(1),104-111.
LinktoArticle
ReadAbstract
Thecontentsoffat,starch,pentosan,fructan,β-glucanandseveralmono-andoligosaccharidesingrainwereevaluatedtofindoutthepossibleeffectsoftheWx-D1geneofbreadwheatusingtwosetsofnear-isogenicwaxyandnon-waxylinesandtwolow-amylosemutantlineswithacommongeneticbackgroundofKanto107.Thesematerialshavetwonon-functionalWx-A1bandWx-B1ballelesincommon.Waxynear-isogeniclineswithanon-functionalWx-D1dalleleshowedconsistentlyincreasedcontentsoffat,totalfructan,β-glucan,glucose,fructose,sucrose,1-kestose,6-kestose,neokestose,nystoseandbifurcosecomparedwithnon-waxylineswithafunctionalWx-D1aallelethroughoutthreegrowing/harvestseasons.StarchandtotalpentosancontentswereinconsistentlyinfluencedbytheallelicstatusoftheWx-D1locus,whilewater-solublepentosanandraffinosecontentswerenotaffected.Thecompositionalchangesofalow-amylosemutantlinewithanalmostnon-functionalWx-D1fallelewerecloselysimilartothoseofwaxynear-isogeniclines,whilesignificantlydifferentchangeswerebarelyobservedinanotherlow-amylosemutantlinewithapartlyfunctionalWx-D1galleleintwoseasons.TheseresultsshowedthattheWx-D1genehaspleiotropiceffectsonthefatandsaccharidecontentsofbreadwheatgrain.
Differencesinfreezetoleranceofzoysiagrasses:II.Carbohydrateandprolineaccumulation.
Patton,A.J.,Cunningham,S.M.,Volenec,J.J.&Reicher,Z.J.(2007).CropScience,47(5),2170-2181.
LinktoArticle
ReadAbstract
Coldhardinessamongzoysiagrass(Zoysiaspp.)genotypesvaries,butthephysiologicalbasisforcoldhardinessisnotcompletelyunderstood.Theobjectiveofthisstudywastodeterminetherelationshipofcarbohydrate(starch,totalsolublesugars,totalreducingsugars,sucrose,glucose,andraffinosefamilyoligosaccharides)andprolineconcentrationswiththecoldacclimationofzoysiagrassandthelethaltemperaturekilling50%oftheplants(LT50).Thirteengenotypesofzoysiagrasswereselectedwithcontrastinglevelsofwinterhardiness.Plantsweregrownfor4wkof8/2°Cday/nightcyclesanda10-hphotoperiodof300µmolm-2s-1toinducecoldacclimation.Rhizomesandstolonsweresampledfromnonacclimatedandcold-acclimatedplantsandusedforcarbohydrateandprolineanalysis.Concentrationsofsolublesugarsandprolineincreasedduringcoldacclimation,whilestarchconcentrationsdecreased.Starch,sugar/starchratio,glucose,totalreducingsugars,andprolineincold-acclimatedplantswerecorrelated(r=0.61,−0.67,−0.73,−0.62,and−0.62,respectively)withLT50.Thesecorrelationsindicatethathigherconcentrationsoftotalreducingsugars,glucose,andprolinearepositivelyassociatedwithzoysiagrassfreezetolerance,whereashigherconcentrationsofstarchappeareddetrimentaltofreezetolerance.
Chainlengthofinulinaffectsitsdegradationandthemicrobiotainthegastrointestinaltractofweanedpigletsafterashort-termdietaryapplication.
Paßlack,N.,Al-Samman,M.,Vahjen,W.,Männer,K.&Zentek,J.(2012).LivestockScience,149(1-2),128-136.
LinktoArticle
ReadAbstract
Dietaryinulincanaffectthecompositionandmetabolicactivityofthegastrointestinalmicrobiotainpiglets.Toinvestigatewhetherthechainlengthofinulinmayinfluenceitsstabilityinthegutandthebacterialcommunity,18weanedpigletswerehoused2percage,with1femaleand1castratedmaleanimaleach.Thepigletsreceivedacontroldietwithoutorwith4%inulin,definedbyanaveragedegreeofpolymerisation(DP)of31(short-chain,I31)or57(long-chain,I57),with6piglets/diet.Afterashortfeedingperiodof6d,fructanconcentrations,selectedbacterialgroups,lacticacid,short-chainfattyacidconcentrations,andthepHweredeterminedinthedigestaofdifferentsegmentsofthegastrointestinaltract.TheresultsindicatedthatdifferencesinthemicrobialdegradationofinulinweredependingontheDP.Comparedtotheshort-chaininulin,theconcentrationsofthelong-chaininulinwerenumericallygreaterinthesmallintestineandcaecum,andgreaterinthedigestaoftheascendingcolon.Differenceswerealsoobservedinthebacterialcompositionofthedigesta,showinggreatercellnumbersofenterococci(P=0.029),bifidobacteria(P=0.029),andLactobacillusmucosae(P=0.028)intheileumingroupI57comparedtogroupI31.However,mostbacteriatendedtobenumericallyreducedintheileumingroupI31comparedtobothcontrolandI57groups.Minoreffectswereobservedintheascendingcolon:L.reuteriandL.amylovorusweredecreasedingroupI57comparedtothecontrolgroup(P=0.031and0.034,respectively),andL.mucosaewasdecreasedingroupI31comparedtothecontrolanimals(P=0.029).Theconcentrationsofbacterialmetabolitesweredistinctivelychangedinthelargeintestineofthepigletsfedinulin.ThepHwaslowerintherectumcontentsingroupI57comparedtothecontrolpiglets(P=0.026),butlacticacidandtotalshort-chainfattyacidconcentrationswerenotaffected.Themolarratiosofpropionicacidincreasedinthecaecalcontents(P=0.040)andinboth,theascendinganddescendingcolonicdigesta(P=0.017and0.013,respectively)ingroupI57comparedtothecontrolgroup,whileaceticaciddecreased(P<0.001) and="" n-valeric="" acid="" increased="">0.001)>P<0.001 and="">0.001>P=0.011,respectively)inthedigestaoftheascendinganddescendingcoloningroupI57.Inconclusion,themicrobialdegradationofinulinwasdependentonitschainlength.Long-chaininulinaffectedthemicrobialfermentationmorepronouncedcomparedtoshort-chaininulin.Theeffectswerealreadyobservedafter6d,arelativelyshortapplicationperiod,indicatingthatinulinmaybeusedspecificallyduringthesensitivepost-weaningperiodforpiglets.
Asimpleandaccuratemethodfordeterminingwheatgrainfructancontentandaveragedegreeofpolymerization.
Verspreet,J.,Pollet,A.,Cuyvers,S.,Vergauwen,R.,VandenEnde,W.,Delcour,J.A.&Courtin,C.M.(2012).JournalofAgriculturalandFoodChemistry,60(9),2102-2107.
LinktoArticle
ReadAbstract
Animprovedmethodforthemeasurementoffructansinwheatgrainsispresented.Amildacidtreatmentisusedforfructanhydrolysis,followedbyanalysisofthereleasedglucoseandfructosewithhighperformanceanionexchangechromatographywithpulsedamperometricdetection(HPAEC-PAD).Notonlytheamountoffructosesetfreefromfructansbutalsothereleasedglucosecanbequantifiedaccurately,allowingdeterminationoftheaveragedegreeofpolymerizationoffructans(DPav).Applicationofthemildacidtreatmenttodifferentgrainsamplesdemonstratedthatacorrectionshouldbemadeforthepresenceofsucroseandraffinose,butnotforstachyoseorhigherraffinoseoligosaccharides.ThefructancontentandDPavofspeltflour,wheatflour,andwholewheatflourwere0.6%,1.2%,and1.8%ofthetotalweightand4,5,and6,respectively.ValidationexperimentsdemonstratethattheproposedquantificationmethodisaccurateandrepeatableandthatalsotheDPavdeterminationisprecise.
Howdoesthepreparationofryeporridgeaffectmolecularweightdistributionofextractabledietaryfibers?
Rakha,A.,Åman,P.&Andersson,R.(2011).Internationaljournalofmolecularsciences,12(5),3381-3393.
LinktoArticle
ReadAbstract
Extractabledietaryfiber(DF)playsanimportantroleinnutrition.ThisstudyonporridgemakingwithwholegrainryeinvestigatedtheeffectofresttimeofflourslurriesatroomtemperaturebeforecookingandamountofflourandsaltintherecipeonthecontentofDFcomponentsandmolecularweightdistributionofextractablefructan,mixedlinkage(1→3)(1→4)-β-D-glucan(β-glucan)andarabinoxylan(AX)intheporridge.ThecontentoftotalDFwasincreased(fromabout20%to23%ofdrymatter)duringporridgemakingduetoformationofinsolubleresistantstarch.Asmallbutsignificantincreaseintheextractabilityofβ-glucan(P=0.016)andAX(P=0.002)duetoresttimewasalsonoted.ThemolecularweightofextractablefructanandAXremainedstableduringporridgemaking.However,incubationoftheryeflourslurriesatincreasedtemperatureresultedinasignificantdecreaseinextractableAXmolecularweight.Themolecularweightofextractableβ-glucandecreasedgreatlyduringaresttimebeforecooking,mostlikelybytheactionofendogenousenzymes.Theamountofsaltandflourusedintherecipehadsmallbutsignificanteffectsonthemolecularweightofβ-glucan.TheseresultsshowthatwholegrainryeporridgemadewithoutaresttimebeforecookingcontainsextractableDFcomponentsmaintaininghighmolecularweights.Highmolecularweightismostlikelyofnutritionalimportance.