α-D-galactosidaseactivityandgalactomannanandgalactosylsucroseoligosaccharidedepletioningerminatinglegumeseeds.
McCleary,B.V.&Matheson,N.K.(1974).Phytochemistry,13(9),1747-1757.
LinktoArticle
ReadAbstract
Germinatingseedsoflucerne,guar,carobandsoybeaninitiallydepletedraffinoseseriesoligosaccharidesandthengalactomannan.Thisdepletionwasaccompaniedbyarapidincreaseandthenadecreaseinα-galactosidaselevels.Lucerneandguarcontainedtwoα-galactosidaseactivities,carobthreeandsoybeanfour.Oneoftheseineachplant,fromitslocationintheendosperm,timeofappearanceandkineticbehaviour,appearedtobeprimarilyinvolvedingalactomannanhydrolysis.ThisenzymeinlucernehadMWof23000andcouldnotbeseparatedfromβ-mannanaseby(NH4)2SO4fractionation,DEAE,CMorSE-cellulosechromatographyorgelfiltration,butonlybypolyacrylamidegelelectrophoresis.Inguar,carobandsoybean,itcouldbeseparatedbyion-exchangechromatographyandgelfiltration.Inlucerne,carobandguarmostofthetotalincreaseinactivitywasduetothisenzyme.Theotherα-galactosidaseshadMWsofabout35000andcouldbeseparatedfromβ-mannanasebydissection,ionexchangecellulosechromatographyandgelfiltration.Theywerelocatedinthecotyledon-embryoandappearedtobeprimarilyinvolvedingalactosylsucroseoligosaccharidehydrolysis.
HydrolysisoflegumeseedD-galacto-D-mannansbyα-D-galactosidasesandβ-D-mannanases.
McCleary,B.V.(1980).“MechanismsofSaccharidePolymerizationandDepolymerization”,(J.John.Marshall,Ed.),AcademicPressInc.,pp.285-300.
LinktoArticle
ReadAbstract
D-Galacto-D-mannansoccurintheendospermsofawiderangeofleguminousseedsinamountsvaryingfrom0.1%(soybean)to45%(Cassiabrewsterii)ofseedweight(1).ThepolysaccharidesfromdifferentspecieshavedifferentproportionsofD-galactoseandD-mannose,butessentiallyalwaysconsistofaβ-1,4-linkedmannanbackbonewithsingleD-galactosebrancheslinedα-1,6(2).
α-D-Galactosidasefromlucerneandguarseed.
McCleary,B.V.(1988).“MethodsinEnzymology”,Volume160,(H.Gilbert,Ed.),ElsevierInc.,pp.627-632.
LinktoArticle
ReadAbstract
α-Galactosidasehasbeenshowntooccurinawiderangeofplantsandanimalsandtobesynthesizedbymicroorganisms.Thisenzymehasbeenpurifiedfromseveralsourcesusingconventionalchromatographicproceduresandarangeofaffinitysupports.Oftheaffinityprocedures,thatemployingN-ɛ-aminocaproyl-α-D-galactopyranosylaminecoupledtoSepharose4BasdescribedbyHarpaz
etal.iseffectiveandreliableandcanbeusedtopurifyα-galactosidasefromawiderangeof
BIOLOGicalmaterials.TheaffinitytechniquedescribedbyHarpaz
etal.wasemployedtopurifyα-galactosidasefromgreencoffeebeansandfromsoybeanseed.However,neitherofthesematerialsisagoodsourceofthisactivity.Thischapterdescribesthelarge-scalepurificationofα-galactosidaseswithhighactivityongalactomannanfromgerminatedseedsoflucerneandguaremployingtheaffinitymatrix.
Galactomannanstructureandβ-mannanaseandβ-mannosidaseactivityingerminatinglegumeseeds.
McCleary,B.V.&Matheson,N.K.(1975).Phytochemistry,14(5-6),1187-1194.
LinktoArticle
ReadAbstract
Structuralchangesingalactomannanongerminationoflucerne,carob,honeylocust,guarandsoybeanseeds,asmeasuredbyviscosity,elutionvolumesongelfiltrationandultra-centrifugationwereslightconsistentwitharapidandcompletehydrolysisofamoleculeoncehydrolysisofthemannanchainstarts.β-Mannanaseactivityincreasedandthendecreased,parallelinggalactomannandepletion.Multipleformsofβ-mannanasewereisolatedandthesewerelocatedintheendosperm.β-Mannanasehadlimitedabilitytohydrolysegalactomannanswithhighgalactosecontents.Seedscontainingthesegalactomannanshadveryactiveα-galactosidases.β-Mannosidaseswerepresentinbothendospermandcotyledon-embryoandcouldbeseparatedchromatographically.Thelevelofactivitywasjustsufficienttoaccountformannoseproductionfrommanno-oligosaccharides.
Galactomannansandagalactoglucomannaninlegumeseedendosperms:Structuralrequirementsforβ-mannanasehydrolysis.
McCleary,B.V.,Matheson,N.K.&Small,D.B.(1976).Phytochemistry,15(7),1111-1117.
LinktoArticle
ReadAbstract
Aseriesofgalactomannanswithvaryingdegreesofgalactosesubstitutionhavebeenextractedfromtheendospermsoflegumeseedswithwaterandalkaliandtheamountofsubstitutionrequiredforwatersolubilityhasbeendetermined.Somewereheterogeneouswithrespecttothedegreeofgalactosesubstitution.Thestructuralrequirementsforhydrolysisbyplantβ-mannanasehavebeenstudiedusingtherelativeratesandextentsofhydrolysisofthesegalactomannans.Amoredetailedexaminationoftheproductsofhydrolysisofcarobgalactomannanhasbeenmade.Atleasttwocontiguousanhydromannoseunitsappeartobeneededforscission.Thisissimilartotherequirementforhydrolysisbymicrobialenzymes.Judastree(Cercissiliquastrum)endospermcontainedapolysaccharidewithauniquecompositionforalegumeseedreserve.Gelchromatographyandelectrophoresisoncelluloseacetateindicatedhomogeneity.Hydrolysiswithamixtureofβ-mannanaseandα-galactosidasegaveaglucose-mannosedisaccharideandacetolysisgaveagalactose-mannose.Theseresults,aswellasthepatternofhydrolysisbyβ-mannanasewereconsistentwithagalactoglucomannanstructure.
Enzymesmetabolizingpolysaccharidesandtheirapplicationtotheanalysisofstructureandfunctionofglycans.
Matheson,N.K.&McCleary,B.V.(1985).“ThePolysaccharides”,Volume3,(G.O.Aspinall,Ed.),AcademicPressInc.,pp.1-105.
LinktoArticle
ReadAbstract
Enzymesmetabolizingpolysaccharideswereusedinsuchprocessesasbakingandbrewingforcountlesscenturiesbeforetherelationshipbetweenthechemicalstructureofthepolysaccharidesandtheirmodificationbyenzymeswasknown.Inthepasttwocenturies,studiesofthestructuresandfunctionsofpolysaccharidesinvolvedinthestorageofchemicalenergy,inthestructuralpartsoftissues,andasinformationcarriers,aswellastheenzymesthatmetabolizethem,havebeencarriedout.
Modesofactionofβ-mannanaseenzymesofdiverseoriginonlegumeseedgalactomannans.
McCleary,B.V.(1979).Phytochemistry,18(5),757-763.
LinktoArticle
ReadAbstract
β-MannanaseactivitiesinthecommercialenzymepreparationsDriselaseandCellulase,inculturesolutionsofBacillussubtilis(TX1),incommercialsnailgut(Helixpomatia)preparationsandingerminatedseedsoflucerne,Leucaenaleucocephalaandhoneylocust,havebeenpurifiedbysubstrateaffinitychromatographyonglucomannan-AH-Sepharose.Onisoelectricfocusing,multipleproteinbandswerefound,allofwhichhadβ-mannanaseactivity.EachpreparationappearedasasinglemajorbandonSDS-polyacrylamidegelelectrophoresis.Theenzymesvariedintheirfinalspecificactivities,Kmvalues,optimalpH,isoelectricpointsandpHandtemperaturestabilitiesbuthadsimilarMWs.Theenzymeshavedifferentabilitiestohydrolysegalactomannanswhicharehighlysubstitutedwithgalactose.ThepreparationsDriselaseandCellulasecontainβ-mannanaseswhichcanattackhighlysubstitutedgalactomannansatpointsofsingleunsubstitutedD-mannosylresiduesiftheD-galactoseresiduesinthevicinityofthebondtobehydrolysedareallononlyonesideofthemainchain.
Effectofgalactosecontentonthesolutionandinteractionpropertiesofguarandcarobgalactomannans.
McCleary,B.V.,Amado,R.,Waibel,R.&Neukom,H.(1981).CarbohydrateResearch,92(2),269-285.
LinktoArticle
ReadAbstract
Guargalactomannanhasbeenmodifiedbytreatmentwithanα-D-galactosidaseApreparationfromlucerneseeds.ThisenzymewaspurifiedbyaffinitychromatographyonN-ϵ-aminocaproyl-α-D-galactopyranosylaminelinkedtoSepharose4B,hadahighactivitytowardsgalactomannans,andwascompletelydevoidofβ-D-mannanase.Onincubationfor2h,thisenzymeremoved>75%ofthegalactosefromguargalactomannanwithnoconcurrentdecreaseinviscosity.Eventualdecreaseinviscositywasassociatedwiththeformationofinsoluble,mannan-typeprecipitates.Thisphenomenon,althoughdirectlyrelatedtothegalactosecontentofthegalactomannan,wasalsotime-dependent.Thelimitingviscositynumberscalculatedforthe“mannanbackbones”ofα-D-galactosidase-treated,guargalactomannanhavinggalactose-mannoseratiosof38:62to15:85werethesame.Modified,guargalactomannan(at0.4%w/v)havingagalactose-mannoseratioof20:80,orless,formsagelonstorageat4°overseveralweeks.Also,gelparticlesformwhensolutionsofthesegalactomannansarepassedthroughafreeze-thawcycle.Samplescontaining<10%=""of=""galactose=""rapidly=""precipitate=""from=""solution=""even=""at=""30°.=""the=""interaction=""of=""guar=""galactomannan=""with=""xanthan=""is=""greatly=""increased=""by=""removal=""of=""galactose=""residues.=""samples=""having=""galactose-mannose=""ratios=""of=""~19:81=""interact=""with=""xanthan=""to=""essentially=""the=""same=""degree=""as=""carob=""galactomannan=""(gal/man="23:77).">
AnenzymictechniqueforthequantitationofgalactomannaninguarSeeds.
McCleary,B.V.(1981).Lebensmittel-Wissenschaft&Technologie,14,56-59.
LinktoArticle
ReadAbstract
Anenzymictechniquehasbeendevelopedfortherapidandaccuratequantitationofthegalactomannancontentofguarseedsandmillingfractions.Thetechniqueinvolvesthemeasurementofthegalactosecomponentofgalactomannansusinggalactosedehydrogenase.Thegalactomannansareconvertedtogalactoseandmanno-oligosaccharidesusingpartiallypurifiedenzymesfromacommercialpreparationandfromgerminatedguarseeds.Simpleprocedureshavebeendevisedforthepreparationoftheseenzymes.Applicationofthetechniquetoanumberofguarvarietiesgavevaluesforthegalactomannancontentrangingfrom22.7to30.8%ofseedweight.
Purificationandpropertiesofaβ-D-mannosidemannohydrolasefromguar.
McCleary,B.V.(1982),CarbohydrateResearch,101(1),75-92.
LinktoArticle
ReadAbstract
Aβ-D-mannosidemannohydrolaseenzymehasbeenpurifiedtohomogeneityfromgerminatedguar-seeds.Difficultiesassociatedwiththeextractionandpurificationappearedtobeduetoaninteractionoftheenzymewithotherproteinmaterial.Thepurifiedenzymehydrolysedvariousnaturalandsyntheticsubstrates,includingβ-D-manno-oligosaccharidesandreducedβ-D-manno-oligosaccharidesofdegreeofpolymerisation2to6,aswellasp-nitrophenyl,naphthyl,andmethylumbelliferylβ-D-mannopyranosides.Thepreferred,naturalsubstratewasβ-D-mannopentaose,whichwashydrolysedattwicetherateofβ-D-mannotetraoseandfivetimestherateofβ-D-mannotriose.Thisresult,togetherwiththeobservationthatα-D-mannoseisreleasedonhydrolysis,indicatesthattheenzymeisanexo-β-D-mannanase.
Preparative–scaleisolationandcharacterisationof61-α-D-galactosyl-(1→4)-β-D-mannobioseand62-α-D-galactosyl-(1→4)-β-D-mannobiose.
McCleary,B.V.,Taravel,F.R.&Cheetham,N.W.H.(1982).CarbohydrateResearch,104(2),285-297.
LinktoArticle
ReadAbstract
N.m.r.,enzymic,andchemicaltechniqueshavebeenusedtocharacterisetheD-galactose-containingtri-andtetra-saccharidesproducedonhydrolysisofcaroband
L.leucocephalaD-galacto-D-mannansbyDriselaseβ-D-mannanase.Theseoligosaccharideswereshowntobeexclusively6
1-α-D-galactosyl-β-D-mannobioseand6
1-α-D-galactosyl-β-D-mannotriose.Fur
Thermore,theseweretheonlyD-galactose-containingtri-andtetra-saccharidesproducedonhydrolysisofcarobD-galacto-D-mannanbyβ-D-mannanasesfromothersources,including
Bacillussubtilis,
Aspergillusniger,
Helixpomatiagutsolution,andgerminatedlegumes.Acidhydrolysisoflucernegalactomannanyielded6
1-α-D-galactosyl-β-D-mannobioseand6
2-α-D-galactosyl-β-D-mannobiose.
β-D-mannosidasefromHelixpomatia.
McCleary,B.V.(1983).CarbohydrateResearch,111(2),297-310.
LinktoArticle
ReadAbstract
β-D-Mannosidase(β-D-mannosidemannohydrolaseEC3.2.1.25)waspurified160-foldfromcrudegut-solutionof
Helixpomatiabythreechromatographicstepsandthengaveasingleproteinband(mol.wt.94,000)onSDS-gelelectrophoresis,andthreeproteinbands(ofalmostidenticalisoelectricpoints)onthin-layeriso-electricfocusing.Eachoftheseproteinbandshadenzymeactivity.Thespecificactivityofthepurifiedenzymeon
p-nitrophenylβ-D-mannopyranosidewas1694nkat/mgat40°anditwasdevoidofα-D-mannosidase,β-D-galactosidase,2-acet-amido-2-deoxy-D-glucosidase,(1→4)-β-D-mannanase,and(1→4)-β-D-glucanaseactivities,almostdevoidofα-D-galactosidaseactivity,andcontaminatedwith<0.02% of="" β-d-glucosidase="" activity.="" the="" purified="" enzyme="" had="" the="" same="">0.02%>
Kmforborohydride-reducedβ-D-manno-oligosaccharidesofd.p.3-5(12.5mM).Theinitialrateofhydrolysisof(1→4)-linkedβ-D-manno-oligosaccharidesofd.p.2-5andofreducedβ-D-manno-oligosaccharidesofd.p.3-5wasthesame,and
o-nitrophenyl,methylumbelliferyl,andnaphthylβ-D-mannopyranosideswerere
ADIlyhydrolysed.β-D-Mannobiosewashydrolysedatarate~25timesthatof6
1-α-D-galactosyl-β-D-mannobioseand6
3-α-D-galactosyl-β-D-mannotetraose,andat~90timestherateforβ-D-mannobi-itol.
Enzymicinteractionsinthehydrolysisofgalactomannaningerminatingguar:Theroleofexo-β-mannanase.
McCleary,B.V.(1983).Phytochemistry,22(3),649-658.
LinktoArticle
ReadAbstract
Hydrolysisofgalactomannaninendospermsofgerminatingguarisduetothecombinedactionofthreeenzymes,α-galactosidase,β-mannanaseandexo-β-mannanase.α-Galactosidaseandexo-β-mannanaseactivitiesoccurbothinendospermandcotyledontissuebutβ-mannanaseoccursonlyinendosperms.Onseedgermination,β-mannanaseandendospermicα-galactosidasearesynthesizedandactivitychangesparallelgalactomannandegradation.Galactomannandegradationandsynthesisofthesetwoenzymesareinhibitedbycycloheximide.Incontrast,endospermicexo-β-mannanaseisnotsynthesizedonseedgermination,butratherisalreadypresentthroughoutendospermtissue.Ithasnoactiononnativegalactomannan.α-Galactosidase,β-mannanaseandexo-β-mannanasehavebeenpurifiedtohomogeneityandtheirseparateandcombinedactioninthehydrolysisofgalactomannanandeffectontherateofuptakeofcarbohydratebycotyledons,studied.Resultsobtainedindicatedthatthesethreeactivitiesaresufficienttoaccountforgalactomannandegradationinvivoand,further,thatallthreearerequired.Cotyledonscontainanactiveexo-β-mannanaseandsugar-uptakeexperimentshaveshownthatcotyledonscanabsorbmannobioseintact,indicatingthatthisenzymeisinvolvedinthecompletedegradationofgalactomannanonseedgermination.
Characterisationoftheoligosaccharidesproducedonhydrolysisofgalactomannanwithβ-D-mannase.
McCleary,B.V.,Nurthen,E.,Taravel,F.R.&Joseleau,J.P.(1983).CarbohydrateResearch,118,91-109.
LinktoArticle
ReadAbstract
Treatmentofhot-water-solublecarobgalactomannanwithβ-D-mannanasesfromA.nigerorlucerneseedaffordsanarrayofD-galactose-containingβ-D-mannosaccharidesaswellasβ-D-manno-biose,-triose,and-tetraose(lucerne-seedenzymeonly).TheD-galactose-containingβ-D-mannosaccharidesofd.p.3–9producedbyA.nigerβ-D-mannanasehavebeencharacterised,usingenzymic,n.m.r.,andchemicaltechniques,as61-α-D-galactosyl-β-D-mannobiose,61-α-D-galactosyl-β-D-mannotriose,63,64-di-α-D-galactosyl-β-D-mannopentaose(theonlyheptasaccharide),and63,64-di-α-D-galactosyl-β-D-mannohexaose,64,65-di-α-D-galactosyl-β-D-mannohexaose,and61,63,64-tri-α-D-galactosyl-β-D-mannopentaose(theonlyoctasaccharides).Fournonasaccharideshavealsobeencharacterised.Penta-andhexa-saccharideswereabsent.Lucerne-seedβ-D-mannanaseproducedthesamebranchedtri-,tetra-andhepta-saccharides,andalsopenta-andhexa-saccharidesthatwerecharacterisedas61-α-D-galactosyl-β-D-mannotetraose,63-α-D-galactosyl-β-D-mannotetraose,61,63-di-α-D-galactosyl-β-D-mannotetraose,63-α-D-galactosyl-β-D-mannopentaose,and64-α-D-galactosyl-β-D-mannopentaose.NoneoftheoligosaccharidescontainedaD-galactosestubontheterminalD-mannosylgroupnorweretheysubstitutedonthesecondD-mannosylresiduefromthereducingterminal.
Actionpatternsandsubstrate-bindingrequirementsofβ-D-mannanasewithmannosaccharidesandmannan-typepolysaccharides.
McCleary,B.V.&Matheson,N.K.(1983).CarbohydrateResearch,119,191-219.
LinktoArticle
ReadAbstract
Purified(1→4)-β-D-mannanasefromAspergillusnigerandlucerneseedshasbeenincubatedwithmannosaccharidesandend-reduced(1→4)-β-D-mannosaccharidesand,fromtheproductsofhydrolysis,acyclicreaction-sequencehasbeenproposed.Fromtheheterosaccharidesreleasedbyhydrolysisofthehot-water-solublefractionofcarobgalactomannanbyA.nigerβ-D-mannanase,apatternofbindingbetweentheβ-D-mannanchainandtheenzymehasbeendeduced.Theproductsofhydrolysiswiththeβ-D-mannanasesfromIrpexlacteus,Helixpomatia,Bacillussubtilis,andlucerneandguarseedshavealsobeendetermined,andthedifferencesfromtheactionofA.nigerβ-D-mannanaserelatedtominordifferencesinsubstratebinding.Theproductsofhydrolysisofglucomannanareconsistentwiththoseexpectedfromthebindingpatternproposedfromthehydrolysisofgalactomannan.
Thefinestructuresofcarobandguargalactomannans.
McCleary,B.V.,Clark,A.H.,Dea,I.C.M.&Rees,D.A.(1985).CarbohydrateResearch,139,237-260.
LinktoArticle
ReadAbstract
ThedistributionofD-galactosylgroupsalongtheD-mannanbackbone(finestructure)ofcarobandguargalactomannanshasbeenstudiedbyacomputeranalysisoftheamountsandstructuresofoligosaccharidesreleasedonhydrolysisofthepolymerswithtwohighlypurifiedβ-D-mannanasesisolatedfromgerminatedguarseedandfromAspergillusnigercultures.Computerprogrammesweredevelopedwhichaccountedforthespecificsubsite-bindingrequirementsoftheβ-D-mannanasesandwhichsimulatedthesynthesisofgalactomannanbyprocessesinwhichtheD-galactosylgroupsweretransferredtothegrowingD-mannanchainineitherastatisticallyrandommannerorasinfluencedbynearest-neighbour/second-nearest-neighboursubstitution.Suchamodelwaschosenasitisconsistentwiththeknownpatternofsynthesisofsimilarpolysaccharides,forexample,xyloglucan;also,additiontoapreformedmannanchainwouldbeunlikely,duetotheinsolublenatureofsuchpolymers.TheD-galactosedistributionincarobgalactomannanandinthehot-andcold-water-solublefractionsofcarobgalactomannanhasbeenshowntobenon-regular,withahighproportionofsubstitutedcouplets,lesseramountsoftriplets,andanabsenceofblocksofsubstitution.TheprobabilityofsequencesinwhichalternateD-mannosylresiduesaresubstitutedislow.TheprobabilitydistributionofblocksizesforunsubstitutedD-mannosylresiduesindicatesthatthereisahigherproportionofblocksofintermediatesizethanwouldbepresentinagalactomannanwithastatisticallyrandomD-galactosedistribution.Basedonthealmostidenticalpatternsofamountsofoligosaccharidesproducedonhydrolysiswithβ-D-mannanase,itappearsthatgalactomannansfromseedofawiderangeofcarobvaritieshavethesamefine-structure.TheD-galactosedistributioninguar-seedgalactomannanalsoappearstobenon-regular,andgalactomannansfromdifferentguar-seedvarietiesappeartohavethesamefine-structure.
Enzymicanalysisofthefinestructureofgalactomannans.
McCleary,B.V.(1994).“MethodsinCarbohydrateChemistry”,Vol.X,(J.N.BeMiller,D.J.MannersandR.J.Sturgeon,Eds.),JohnWiley&SonsInc.,pp.175-182.
LinktoArticle
ReadAbstract
Anumberofmethodshavebeendescribedfortheanalysisofthefinestructureofgalactomannans,i.e.,thedistributionofD-galactosylunitsalongtheD-mannanbackbone(1).Suchstudiesincludetheanalysisofx-raydiffractiondataofstretchedfibersofgalactomannans(2,3),1H-and13C-nmr(nuclearmagneticresonance)ofnativeandpartiallydepolymerizedgalacto¬mannans(4)andarangeofchemicalprocedures(5-7),includingthoseemployingadetailedtheoreticalanalysisofthekineticsofreaction(8).Analternativeapproachinvolvesthecharacterizationandquantificationoftheoligosaccharidesproducedonhydrolysisofgalactomannansbyhighlypurifiedandwell-characterizedβ-mannanases(EC3.2.1.78)(9,10).Theβ-mannanasesemployedwerepurifiedtohomogeneitybyaffinitychromatographyongIucornannan-AH-Sepharose4B.Theywerecharacterizedbyarangeofphysicochemicaiproceduresbydeterminingthekineticsoftheiractiononβ-mannooligosaccharides,andbycharacterizingthestructuresofoligosaccharidesproducedonhydrolysisofgalactomannansandglucomannans(11).Fromthesestudies,abasicmodeldescribingthesubsitebindingrequirementsofalltheβ-mannanasesexaminedwasproposed(Fig.1).Thismodelwasthenmodifiedtoaccountfortheslightdifferencesnotedinthetypesofoligosaccharidesproducedbyβ-mannanasesfromdifferentsources.Theβ-mannanaseswhichdiffermostsignificantlyintheiractionpatternsongalactomannansarethosefromAspergillusnigerculturefiltratesandfromgerminatedguarseed.
Effectofgalactose-substitution-patternsontheinteractionpropertiesofgalactomannas.
Dea,I.C.M.,Clark,A.H.&McCleary,B.V.(1986).CarbohydrateResearch,147(2),275-294.
LinktoArticle
ReadAbstract
ArangeofgalactomannansvaryingwidelyinthecontentsofD-galactosehavebeencomparedforself-associationandtheirinteractionpropertieswithagaroseandxanthan.Whereas,ingeneral,themostinteractivegalactomannansarethoseinwhichthe(1→4)-β-D-mannanchainisleastsubstitutedbyα-D-galactosylstubs,evidenceispresentedwhichindicatesthatthedistributionofD-galactosylgroupsalongthebackbone(finestructure)canhaveasignificanteffectontheinteractionproperties.Forgalactomannanscontaining<30% of="" d-galactose,="" those="" which="" contain="" a="" higher="" frequency="" of="" unsubstituted="" blocks="" of="" intermediate="" length="" in="" the="" β-d-mannan="" chain="" are="" most="" interactive.="" for="" galactomannans="" containing="">40%ofD-galactose,thosewhichcontainahigherfrequencyofexactlyalternatingregionsintheβ-D-mannanchainaremostinteractive.Thisselectivity,onthebasisofgalactomannanfine-structure,inmixedpolysaccharideinteractionsinvitrocouldmimictheselectivityofbindingofbranchedplant-cell-wallpolysaccharidesinbiologicalsystems.30%>
Effectofthemolecularfinestructureofgalactomannansontheirinteractionproperties-theroleofunsubstitutedsides.
Dea,I.C.M.,Clark,A.H.&McCleary,B.V.(1986).FoodHydrocolloids,1(2),129-140.
LinktoArticle
ReadAbstract
ArangeofgalactomannansvaryingwidelyinthecontentofD-galactosehavebeencomparedforself-association,andtheirinteractionpropertieswithagaroseandxanthan.TheresultspresentedindicatethatingeneralthemostinteractivegalactomannansarethoseinwhichtheD-mannanmainchainbearsfewestD-galactosestubs,andconfirmthatthedistributionofD-galactosegroupsalongthemainchaincanhaveasignificanteffectontheinteractivepropertiesofthegalactomannans.Ithasbeenshownthatfreeze—thawprecipitationofgalactomannansrequiresregionsoftotallyunsubstitutedD-mannoseresiduesalongthemainchain,andthatathresholdforsignificantfreeze—thawprecipitationoccursataweight-averagelengthoftotallyunsubstitutedresiduesofapproximatelysix.ForgalactomannanshavingstructuresabovethisthresholdtheirinteractivepropertieswithotherpolysaccharidesarecontrolledbystructuralfeaturesassociatedwithtotallyunsubstitutedregionsoftheD-mannanbackbone.Incontrast,forgalactomannansbelowthisthreshold,theirinteractivepropertiesarecontrolledbystructuralfeaturesassociatedwithunsubstitutedsidesofD-mannanbackbone.
GalactomannanchangesindevelopingGleditsiaTriacanthosSeeds.
McCleary,B.V.,Mallett,I.&Matheson,N.K.(1987).Phytochemistry,26(7),1889-1894.
LinktoArticle
ReadAbstract
Galactomannanhasbeenextractedfromtheendospermofseedsof
Gleditsiatriacanthos(honeylocust)atdifferentstagesofdevelopment,whentheseedwasaccumulatingstoragematerial.Propertiesofthedifferentsampleshavebeenstudied.Themolecularsizedistributionbecamemoredisperseasgalactomannanaccumulatedandthegalactose:mannoseratiodecreasedslightly.Someposs
IBLereasonsforthesechangesarediscussed.
Glycosidases—agreatsynthetictool.
Scigelova,M.,Singh,S.&Crout,D.H.G.(1999).JournalofMolecularCatalysisB:Enzymatic,6(5),483-494.
LinktoArticle
ReadAbstract
Glycosidaseswereusedtoprepareoligosaccharidestructuresofphysiologicalandmedicinalrelevance.Thestudyincludedanextensivescreeningofcrudeenzymaticpreparationsforα-andβ-galactosidase,α-andβ-mannosidase,β-N-acetylglucosaminidase,β-N-acetylgalactosaminidaseandα-L-fucosidaseactivities.Theenzymeswereassessedwithrespecttoregioselectivityofglycosyltransferontocarbohydrateacceptors.Thepurificationproceduresforindividualbiocatalystsaredescribedindetail.
Diffusionofmacromoleculesinpolymersolutionsandgels:alaserscanningconfocalmicroscopystudy.
Burke,M.D.,Park,J.O.,Srinivasarao,M.&Khan,S.A.(2000).Macromolecules,33(20),7500-7507.
LinktoArticle
ReadAbstract
Laserscanningconfocalmicroscopycombinedwithfluorescencerecoveryafterphotobleachingisaneffectivetooltomeasurethediffusioncoefficientsofmacromoleculesincross-linkedhydrogelsandpolymersolutions.Inthisstudy,theeffectsofenzymetreatmentonthediffusionofmacromolecules(FITC-dextran)inguarsolutionsandtitanium-guarhydrogelsareexamined.Enzymetreatmentwithβ-mannanase,apolymerbackbonecleavingenzyme,quicklyincreasesthediffusioncoefficientoftheprobemoleculesinbothsolutionsandhydrogelstothatinwater.Enzymetreatmentofguarsolutionsandhydrogelswithα-galactosidase,asidechaincleavingenzyme,displaysauniquebehaviorduetochangesinthefinestructureofguar.Theremovalofgalactosebranchesfromthemannanbackboneofguarcreatesadditionalhyperentanglements(i.e.,cross-links),whichreducethewaterholdingcapacityofguarandinducesyneresis.Ifthedepthatwhichthediffusioncoefficientismeasuredremainsconstant,aminimumisobservedinthediffusioncoefficientasα-galactosidaseenzymetreatmenttimeincreases.Atthesiteofmeasurement,thesamplechangesfromahomogeneousguarsystemtoaphase-separatedpolymer-richhydrogelandfinallytoadilutepolymerphaseasthepolymer-richhydrogelphaseprecipitatesbelowthesiteofmeasurement.Thediffusioncoefficientinthedilutepolymerphaseincreasestothatinwater,whilethediffusioncoefficientinthehydrogelphasecontinuestodecreasetoavalueofapproximately6×10-8cm2/s.
Determinationoflocustbeangumandguargumbypolymerasechainreactionandrestrictionfragmentlengthpolymorphismanalysis.
Meyer,K.,Rosa,C.,Hischenhuber,C.&Meyer,R.(2001).JournalofAOACInternational,84(1),89-99.
LinktoArticle
ReadAbstract
Apolymerasechainreaction(PCR)wasdevelopedtodifferentiatethethickeningagentslocustbeangum(LBG)andthecheaperguarguminfinishedfoodproducts.UniversalprimersforamplificationoftheintergenicspacerregionbetweentrnL3’(UAA)exonandtrnF(GAA)geneinthechloroplast(cp)genomeandsubsequentrestrictionanalysiswereappliedtodifferentiateguargumandLBG.Thepresenceof<5% (w/w)="" guar="" gum="" powder="" added="" to="" lbg="" powder="" was="" detectable.="" based="" on="" data="" obtained="" from="" sequencing="" this="" intergenic="" spacer="" region,="" a="" second="" pcr="" method="" for="" the="" specific="" detection="" of="" guar="" gum="" dna="" was="" also="" developed.="" this="" assay="" detected="" guar="" gum="" powder="" in="" lbg="" in="" amounts="" as="" low="" as="" 1%="" (w/w).="" both="" methods="" successfully="" detected="" guar="" gum="" and/or="" lbg="" in="" ice="" cream="" stabilizers="" and="" in="" foodstuffs,="" such="" as="" dairy="" products,="" ice="" cream,="" dry="" seasoning="" mixes,="" a="" finished="" roasting="" sauce,="" and="" a="" fruit="" jelly="" product,="" but="" not="" in="" products="" with="" highly="" degraded="" dna,="" such="" as="" tomato="" ketchup="" and="" sterilized="" chocolate="" cream.="" both="" methods="" detected="" guar="" gum="" and="" lbg="" in="" ice="" cream="" and="" fresh="" cheese="" at="" levels="">5%><0.1%.>0.1%.>
Gelationandrheologyofxanthan/enzyme-modifiedguarblends.
Pai,V.B.&Khan,S.A.(2002).CarbohydratePolymers,49(2),207-216.
LinktoArticle
ReadAbstract
Therheologicalbehaviorandsynergisticcharacterofmixedpolysaccharidesystemsareexaminedforblendsofxanthanwithenzymatically-modifiedguar.Inparticular,theenzymeα-galactosidaseisusedtoselectivelycleaveoffthegalactosesidechainsofguarinordertoobtaingalactomannanswithtailoredmoleculararchitecture:EMG1witharelativelyhighgalactosecontentof33.6%andamannose(M)togalactose(G)ratioof1.85,andEMG2withalowergalactosecontent(25.2%)andanM/Gratioof2.86.Blendsofxanthanwithenzymatically-modifiedguargumsamplesareexaminedintermsoftheirdynamicrheologicalpropertiesandcomparedtothoseofxanthan—locustbeangumblends.Theextentofsynergism,illustratedbythegelelasticmodulusG′andyieldstressτc,isfoundtoincreasewithincreasingextentofenzymaticmodification.Atconstantionicstrength,theEMG2andlocustbeanblendsbehavesimilarly,withincreasingextentofsynergyasthetemperatureofmixingisincreased.Additionally,atafixedmixingtemperature,theblendsmadeinwaterhaveahigherelasticmodulusthanthosemadeinsalt.Incontrast,theEMG1blendsareweakerandthedynamicmoduliareunaffectedbychangesinthemixingtemperatureorionicstrength.Theseresultsareconsistentwiththoseofotherresearchersandaredirectlyrelatedtoboththelevelofdisorderinthexanthanmoleculeaswellasthegalactosecontentandfinestructureofthegalactomannan.
Anovelenzymatictechniqueforlimitingdrugmobilityinahydrogelmatrix.
Burke,M.D.,Park,J.O.,Srinivasarao,M.&Khan,S.A.(2005).JournalofControlledRelease,104(1),141-153.
LinktoArticle
ReadAbstract
Anoralcolonspecificdrugdeliveryplatformhasbeendevelopedtofacilitatetargettedreleaseoftherapeuticproteinsaswellassmallmoleculedrugs.Asimpleenzymaticprocedureisusedtomodifythemoleculararchitectureofalightlychemicallycrosslinkedgalactomannanhydrogelaswellasamodeldrug–galactomannanoligomerconjugate,fluoroisocynate(FITC)taggedguaroligomer,toentrapthemodeldrug.Theenzyme-modifiedhydrogelretainsthedruguntilitreachesthecolonicenvironmentwherebacteriasecreteenzymes(namelyβ-mannanase)todegradethegelandreleasethedrugmolecule.Laserscanningconfocalmicroscopycombinedwithfluorescencerecoveryafterphotobleachingisusedtoquantifythediffusionofthedrugconjugate.Thediffusioncoefficientofsolutesinthelightlycrosslinkedgalactomannanhydrogelisapproximatelyequaltothediffusioncoefficientintheguarsolutionforsimplediffusionaldrugloading.Afterdrugloading,α-galactosidasetreatmentgeneratesadditionalphysicalcrosslinksinthehydrogelmatrixaswellasbetweenthedrug–oligomerconjugateandthehydrogel,whichreducesdiffusionofthedrug–oligomerconjugatesignificantly.Degradationofthehydrogelbyβ-mannanaseresultsinaslowandcontrolledrateofFITC–guaroligomerdiffusion,whichgeneratesanextendedreleaseprofileforthemodeldrug.
Evolutionofmicrostructureandrheologyinmixedpolysaccharidesystems.
Pai,V.,Srinivasarao,M.&Khan,S.A.(2002).Macromolecules,35(5),1699-1707.
LinktoArticle
ReadAbstract
Synergisticbiopolymerblendscomposedofxanthanandenzymaticallymodifiedguargalactomannanareinvestigatedintermsoftheirtime-dependentproperties.Inparticular,aside-chaincleavingenzyme,α-galactosidase,isusedtocleaveoffgalactosesugarunitsfromguartoproducemodifiedgalactomannanswithvaryinggalactosecontentsof25.2and16.2%.Laserscanningconfocalmicroscopyanddynamicrheologyareusedtomonitorthepropertiesofeachofthesetwomodifiedguarguminsolutionaswellasinblendswithxanthanastheyareallowedtoageoveraperiodof3weeks.Ourresultsindicatethatsolutionsofguarwithahighergalactose(25.2%)contentundergonorheologicalchangeovertheperiodofobservationandshowaconstantgelelasticmodulus(G‘)inblendswithxanthan.Confocalimagesofthesolutionsandtheblendsalsoindicatethatthesystemsarestableoveraperiodof3weeks.Incontrast,guargumwithalowergalactosecontent(16.2%)formsinterchainassociationsinsolution,developingaggregatesthatconvertitfromamacromolecularsolutiontoagel.Thisisreflectedinitsdynamicmoduliwhichincreasesignificantlywithtimeandshowatransitionfromfrequency-dependentbehaviorwithG‘ ‘(viscousmodulus)>G‘(elasticmodulus)toafrequency-independentcharacterwithG‘>G‘ ‘.Thisprocessofassociationandphaseseparationisdirectlyobservedinconfocalimagesofthemodifiedguaraswellasinitsblend,thoughnottothesameextentinthelatter.Thepresenceofasecondcomponentthusseemstoretardtheassociationprocess.Interestingly,theblendmoduliremainunchangedinmagnitudeandshowgellikefeatureseventhoughthemodeofassociationandconcomitantmicrostructurechanges.
Doesthebranchingdegreeofgalactomannansinfluencetheireffectonwheyproteingelation?
Tavares,C.,Monteiro,S.R.,Moreno,N.&LopesdaSilva,J.A.(2005).ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects,270,213-219.
LinktoArticle
ReadAbstract
Theinfluenceofthedegreeofbranchingofgalactomannansontheheat-inducedgelationofwheyproteinswasinvestigated,usingoscillatoryrheologicalmeasurementsatlowstrainamplitudeandmicrostructuralanalysisbyconfocallaserscanningmicroscopy.Galactomannanswerefromdifferentoriginsand/orenzymaticallymodified,withmannose-to-galactoseratiosrangingfrom1.5to3.7.Wheyproteingelswereformedat13%protein,pH7andlowionicstrength.Galactomannanconcentrationrangedfrom0to0.6%.Withintherangeofconcentrationsused,thepresenceofthegalactomannandecreasedthegellingtemperatureandhadapositiveeffectonthegelstrengthofthewheyproteingel.Theseeffectsaremorepronouncedasthedegreeofbranchingdecreases.Theeffectoftheoriginalguarsamplewasquitedifferentfromalltheothersamples,eitherintermsofrheologyormicrostructure,particularlyforthehighergalactomannanconcentration.Themixedgelsappearedasbiphasicsystems,withthepolysaccharideenrichedphasedispersedontheproteinmatrixatlowpolysaccharideconcentrations,butprogressingtoaphaseinversionathigherpolysaccharideconcentrations,especiallyforthelowerbranchedsamples.Thelinearviscoelasticityseemstobeinsensitivetosomeofthemicrostructuralchangesobservedwithinthemixedgels.ThebranchingdegreeofthegalactomannandoeshaveaneffectonmicrostructureandviscoelasticityoftheWPIgels,butthiseffectislimitedtoashortrangeofmannose-to-galactoseratios,abovewhichthiseffectisinsignificant.
EnzymaticModificationofGuarSolutions.
Tayal,A.,Pai,V.,Kelly,R.M.&Khan,S.A.(2002).WaterSolublePolymers,(pp.41-49),SpringerUS.
LinktoArticle
ReadAbstract
Structurallymodifiedguargalactomannansfindapplicationinfoodandpetroleumindustriesasrheologymodifiers.Enzymesprovideapowerfulandconvenientmethodtomodifyguarstructure.Inthisstudy,thekineticsofenzymaticdegradationofguarsolutionswereinvestigatedusingSECandrheology.MolecularinformationfromSECrevealsthedegradationreactiontobezerothorderinguarconcentration.Further,therateconstantwasproportionaltoenzymeconcentration,demonstratingthattheenzymeactsasatruecatalyst.Thezeroshearviscositywasverysensitivetodegradation,withseveralordersofmagnitudechangebeingobservedoverthecourseofpolymerchainscission.Auniquecorrelationwasdevelopedbetweendegradationtime,guarmolecularweightandviscosity.Thisenablessuperpositionoftheviscosity-timeprofilesfordifferentenzymeconcentrationstoamastercurve;providingforaprioripredictionofguarsolutionviscosityasafunctionofdegradationtimeandenzymeconcentration.
Rheologyandmicrostructuralchangesduringenzymaticdegradationofaguar-boraxhydrogel.
Tayal,A.,Pai,V.B.&Khan,S.A.(1999).Macromolecules,32(17),5567-5574.
LinktoArticle
ReadAbstract
Hydrogelscomposedofboraxcross-linkedguargalactomannansareenzymaticallydegradedusingendo-β-mannanase,anenzymewhichcleavesthepolymerchainbackbone.Dynamicrheologicalmeasurementsshowtheelastic(G‘)andviscous(G‘ ‘)modulitobesensitivetogelstructureandtoreducesignificantlyduringtheenzymatichydrolysisprocess.Thereductioninrheologicalpropertiesshowsthreedistinctregimes: aninitiallargedecrease,aslowerreductionrateatintermediatetimes,andanacceleratedreductionatlongerdegradationtimes.Incontrast,thepolymerchainmolecularweight,obtainedfromgelpermeationchromatography,reducesrapidlyatshorttimesandataslowerratesubsequently.Wethereforefindthekineticsofmodulireductiontobedictatedbytherelationshipbetweengelstructureandrheologicalproperties,ratherthanpurelytheratesofchainscission.Atshorttimes,thelargedecreaseinmoduliisanalogoustochangesinmolecularweightandcandirectlybeattributedtochainscission.Atlongtimes,correspondingtowhentheproductofpolymerconcentrationandintrinsicviscosity,c[η],reachesacriticalvalue(≤2.5),thechainsaretooshorttooverlapandthelongrangenetworkbreaksdownrapidly,leadingtoacceleratedmodulireduction.Additionally,asynergisticincreaseinthedegradationrateisobservedonusingacombinationofbackbone-cleavingβ-mannanaseenzymeandaside-chain-cleavingα-galactosidaseenzyme,ascomparedtousingonlyβ-mannanase.Thiscanbeattributedtoanenhancementofmannanaseactivityduetoremovalofthestericallyhinderinggalactosesidechains.Finally,acomparisonofgelandsolutiondegradationrevealsverysimilarbehaviorinmolecularweightchangesforbothbutcontrastingtrendsinrheology.
Enzyme-modifiedguargum/xanthangelation:Ananalysisbasedoncascademodel.
Mao,C.F.,Zeng,Y.C.&Chen,C.H.(2012).FoodHydrocolloids,27(1),50-59.
LinktoArticle
ReadAbstract
Thegelpropertiesofamixtureofenzymatically-modifiedguargum(EMG)andxanthan(XG)wereinvestigated.Theguargumsampletreatedwithα-galactosidasetoremovegalactoseresidueshadamannose/galactoseratioof3.02,andwascapableofformingasynergisticgelwithxanthan.Theconcentration-dependentandtemperature-dependentmodulusdatafortheEMG/XGgelwereanalyzedbythetwo-componentcascademodelwhichassumedaheterotypicassociationbetweensegmentsofEMGandXG.Theoptimalfunctionalities(numberofcross-linkingsitesperchain),fEMGandfXG,werefoundtobe300and30,respectively.Theformerisequaltothenumberofsegmentsizewithmorethansixunsubstitutedmannoseresiduesinagalactomannanbackbone,whilethelattercorrespondstoacross-linkdensityofoneper37repeatingunitsinaxanthanmolecule.ThecascadeanalysisofthecompositiondependenceofcriticalgellingconcentrationwasperformedbyintroducingtheeffectofthehomotypicassociationofXGorEMG,whichbecamesignificantinthegelpointmeasurement.Theenthalpychangepercross-linkfortheheterotypicassociationwasfoundtobetwotimeshigherthanthatforthehomotypicassociation.