Megazyme/木酶片/T-XYZ-1000T/1000片
商品编号:
T-XYZ-1000T
品牌:
Megazyme INC
市场价:
¥27096.00
美元价:
16257.60
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedXylazyme(100mgtablets)forthemeasurementofenzymeactivity,forresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Fortheassayofendo-1,4-β-D-xylanase.ContainingAZCL-arABInoxylan(wheat).ThissubstrateisthesameasXylazymeAXexceptforthelargertabletsize(i.e.100mgcf.60mg)andslightlydifferentassayformat.
Novelsubstratesfortheautomatedandmanualassayofendo-1,4-β-xylanase.
Mangan,D.,Cornaggia,C.,Liadova,A.,McCormack,N.,Ivory,R.,McKie,V.A.,Ormerod,A.&McCleary,D.V.(2017).CarbohydrateResearch,445,14-22.
LinktoArticle
ReadAbstract
endo-1,4-β-Xylanase(EC3.2.1.8)isemployedacrossabroadrangeofindustriesincludinganimalfeed,brewing,baking,biofuels,detergentsandpulp(paper).Despiteitsimportance,arapid,reliable,reproducIBLe,automatableassayforthisenzymethatisbasedontheuseofachemicallydefinedsubstratehasnotbeendescribedtodate.Reportedhereinisanewenzymecoupledassayprocedure,termedtheXylX6assay,thatemploysanovelsubstrate,namely4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-45-O-glucosyl-xylopentaoside.ThedevelopmentofthesubstrateandassociatedassayisdiscussedhereandtherelationshipbetweentheactivityvaluesobtainedwiththeXylX6assayversustrADItionalreducingsugarassaysanditsspecificityandreproducibilitywerethoroughlyinvestigated.
Comparisonofendolytichydrolasesthatdepolymerise1,4-β-D-mannan,1,5-α-L-arabinanand1,4-β-D-galactan.
McCleary,B.V.(1991).“EnzymesinBiomassConversion”,(M.E.HimmelandG.F.Leatham,Eds.),ACSSymposiumSeries460,Chapter34,pp.437-449.AmericanChemicalSociety,Washington.
LinktoArticle
ReadAbstract
Hydrolysisofmannan-typepolysaccharidesbyβ-mannanaseisdependentonsubstitutiononandwithinthemain-chainaswellasthesourceoftheβ-mannanaseemployed.Characterisationofreactionproductscanbeusedtodefinethesub-sitebindingrequirementsoftheenzymesaswellasthefine-structuresofthepolysaccharides.Actionofendo-arabinanaseandendo-galactanaseonarabinansandarabinogalactansisdescribed.Specificassaysforendo-arabinanaseandarabinan(infruit-juiceconcentrates)arereported.
Measurementofendo-1,4-β-D-xylanase.
McCleary,B.V.(1992).“XylansandXylanases”,(J.Visser,G.Beldman,M.A.Kusters-vanSomeronandA.G.J.Voragen,Eds.),ProgressinBiotechnologyVol.7,Elsevier,SciencePublishersB.V.,pp.161-169.
LinktoArticle
ReadAbstract
Variousproceduresforthemeasurementofxylanaseinfermentationbroths,commercialenzymemixtures,breadimprovermixturesandfeedsamplesaredescribed.Problemsassociatedwiththeroutineuseofreducing-sugarbasedmethodsaxehighlightedandtheadvantagesandlimitationsofviscometricanddye-labelledsubstrateproceduresformeasurementoftracelevelsofactivityinfeedsamplesarediscussed.
Measurementofpolysaccharidedegradingenzymesusingchromogenicandcolorimetricsubstrates.
McCleary,B.V.(1991).ChemistryinAustralia,58,398-401.
LinktoArticle
ReadAbstract
Enzymicdegradationofcarbohydratesisofmajorsignificanceintheindustrialprocessingofcerealsandfruits.Intheproductionofbeer,barleyisgerminatedunderwelldefinedconditions(malting)toinducemaximumenzymesynthesiswithminimumrespirationofreservecarbohydrates.Thegrainsaredriedandthenextractedwithwaterundercontrolledconditions.Theamylolyticenzymessynthesizedduringmalting,aswellasthosepresentintheoriginalbarley,convertthestarchreservestofermentablesugars.Otherenzymesactonthecellwallpolysaccharides,mixed-linkageβ-glucanandarabinoxylan,reducingtheviscosityandthusaidingfiltration,andreducingthepossibilityofsubsequentprecipitationofpolymericmaterial.Inbaking,β-amylaseandα-amylasegivecontrolleddegradationofstarchtofermentablesugarssoastosustainyeastgrowthandgasproduction.Excessquantitiesofα-amylaseintheflourresultinexcessivedegradationofstarchduringbakingwhichinturngivesastickycrumbtextureandsubsequentproblemswithbreadslicing.Juiceyieldfromfruitpulpissignificantlyimprovedifcell-walldegradingenzymesareusedtodestroythethree-dimensionalstructureandwaterbindingcapacityofthepecticpolysaccharidecomponentsofthecellwalls.Problemsofroutineandreliableassayofcarbohydratedegradingenzymesinthepresenceofhighlevelsofsugarcompoundsareexperiencedwithsuchindustrialprocess.
Optimisingtheresponse.
Acamovic,T.&McCleary,B.V.(1996).FeedMix,4,14-19.
LinktoArticle
ReadAbstract
Afinebalanceexistsbetweenenzymeactivityandtheadverseeffectsassociatedwithfeedprocessing.Accurateestimationofenzymeactivityinthefeedisapre-requisitetooptimisingtheresponse.
Nonstarchpolysaccharidehydrolyzingenzymesasfeedadditives:detectionofenzymeactivitiesandproblemsencounteredwithquantitativedeterminationincomplexsamples.
Vahjen,W.,Gläser,K.,Froeck,M.&Simon,O.(1997).ArchivesofAnimalNutrition,50(4),331-345.
LinktoArticle
ReadAbstract
Chromogenicsubstrates,anagardiffusionassayandviscosityreductionwereusedtoestimateβ-glu‐canaseandxylanaseactivitiesinwatersolubleextractsofdifferentfeedstuffsanddigestasupernatants.Thedinitrosalicylicacidreducingsugarmethodwasemployedtocalibrateresultsfromdifferentmethodsbasedoninternationalunits(IU,glucoseequivalents).Thedetectionofdyereleasefromchromogenicsubstrateswasasuitablemethod,allowingthedetectionof0.05IUofenzymeactivitypermlofextract,althoughmeasurementsindigestasupernatantswerelimitedinlinearity(0.1–0.5IU/mlsupernatant).Withtheagardiffusionassaythedetectionofenzymeactivitywaspossibleoverawiderconcentrationrange(extracts:0.05–1IU/ml,digestasupernatants:0.1–1IU/ml),butvisualevaluationledtoinaccuratemeasurement.Accuracycanbeimprovedbycomputerbasedevaluationofdigitalimages.Theuseofviscosityreductionproducedlinearstandardcurvesfrom0.01to0.5IU/mlinfeedextracts,butreliabilityofmeasurementsdependedonmodificationofsubstrates.Quantificationofenzymeactivitieswasinfluencedbymatrixeffectsofcomplexsamples.Cerealdependantdifferenceswerefoundinvariousextractsoffeedmixturesandcerealextracts.Digestasupernatantspartlyinhibitedenzymeactivity,dependingontheoriginofthesample.Interactionofsubstrateswithdigestacomponentsvariedbetweenmethods.Thesensitivityofthemethodsiscomparable,however,allmethodsrequirespecificcalibrationstoaccountformatrix‐andenzymespecificeffects.
aguA,thegeneencodinganextracellularα-glucuronidasefromAspergillustubingensis,isspecificallyinducedonxyloseandnotonglucuronicacid.
deVries,R.P.,Poulsen,C.H.,Madrid,S.&Visser,J.(1998).JournalofBacteriology,180(2),243-249.
LinktoArticle
ReadAbstract
Anextracellularα-glucuronidasewaspurifiedandcharacterizedfromacommercialAspergilluspreparationandfromculturefiltrateofAspergillustubingensis.Theenzymehasamolecularmassof107kDaasdeterminedbysodiumdodecylsulfate-polyacrylamidegelelectrophoresisand112kDaasdeterminedbymassspectrometry,hasadeterminedpIjustbelow5.2,andisstableatpH6.0forprolongedtimes.ThepHoptimumfortheenzymeisbetween4.5and6.0,andthetemperatureoptimumis70°C.Theα-glucuronidaseisactivemainlyonsmallsubstitutedxylo-oligomersbutisalsoabletoreleaseasmallamountof4-O-methylglucuronicacidfrombirchwoodxylan.Theenzymeactssynergisticallywithendoxylanasesandβ-xylosidaseinthehydrolysisofxylan.TheenzymeisNglycosylatedandcontains14putativeN-glycosylationsites.Thegeneencodingthisα-glucuronidase(aguA)wasclonedfromA.tubingensis.Itconsistsofanopenreadingframeof2,523bpandcontainsnointrons.Thegenecodesforaproteinof841aminoacids,containingaeukaryoticsignalsequenceof20aminoacids.Thematureproteinhasapredictedmolecularmassof91,790DaandacalculatedpIof5.13.MultiplecopiesofthegenewereintroducedinA.tubingensis,andexpressionwasstudiedinahighlyoverproducingtransformant.TheaguAgenewasexpressedonxylose,xylobiose,andxylan,similarlytogenesencodingendoxylanases,suggestingacoordinateregulationofexpressionofxylanasesandα-glucuronidase.GlucuronicaciddidnotinducetheexpressionofaguAandalsodidnotmodulatetheexpressiononxylose.AdditionofglucosepreventedexpressionofaguAonxylanbutonlyreducedtheexpressiononxylose.
Crystallizationandpreliminarycrystallographicanalysisofendo-1,4-beta-xyalanaseIfromAspergillusniger.
Krengel,U.,Rozeboom,H.J.,Kalk,K.H.&Dijkstra,B.W.(1996).BIOLOGicalCrystallography,52(3),571-576.
LinktoArticle
ReadAbstract
AfamilyGxylanasefromAspergillusnigerhasbeencrystallizedusingthevapor-diffusionmethod.Severalcrystalformscouldbeobtainedusingvarioussodiumsaltsasprecipitants.ThreeofthecrystalformsbelongtospacegroupsP21,P212121andP43andhavecellparametersofapproximatelya=b=85.1,c=113.6Åandα=β=γ=90°.Thesecrystalformscanbeconvertedintooneanotherbyflashfreezingormacroseeding.Afourthcrystalformiscubic(spacegroupP213)withunit-cellaxesofa=b=c=112.3Å.Datasetsforthreeofthefourcrystalformshavebeencollected,extendingtoamaximumresolutionof2.4Å.Thestructuresofthemonoclinicandorthorhombiccrystalshavebeensolvedbymolecularreplacementbycombiningthecrystallographicinformationofthedifferentcrystalforms.Refinementoftheorthorhombiccrystalformisnowinprogress.
DisruptionoftheL‐arabitoldehydrogenaseencodinggeneinAspergillustubingensisresultsinincreasedxylanaseproduction.
Nikolaev,I.,FarmerHansen,S.,Madrid,S.&deVries,R.P.(2013).BiotechnologyJournal,8(8),905-911.
LinktoArticle
ReadAbstract
Fungalxylanasesareofmajorimportancetomanyindustrialsectors,suchasfoodandfeed,paperandpulp,andbiofuels.Improvingtheirproductionisthereforehighlyrelevant.Wedeterminedthemolecularbasisofanimprovedxylanase-producingstrainofAspergillustubingensisthatwasgeneratedbyUVmutagenesisinanindustrialstrainimprovementprogram.Usingenzymeassays,geneexpression,sequencingoftheladAlocusintheparentandmutant,andcomplementationofthemutation,wewereabletoshowthatimprovedxylanaseproductionwasmainlycausedbyachromosomaltranslocationthatoccurredbetweenasubtilisin-likeproteasepepDgeneandtheL-arabitoldehydrogenaseencodinggene(ladA),whichispartoftheL-arabinosecatabolicpathway.Thisgenomicrearrangementresultedindisruptionofbothgenesand,asaconsequence,theinabilityofthemutanttouseL-arabinoseasacarbonsource,whilegrowthonD-xylosewasunaffected.ComplementationwithconstitutivelyexpressedladAconfirmedthatthexylanaseoverproducingphenotypewasmainlycausedbylossofladAfunction,whileaknockoutofxlnRintheUVmutantdemonstratedthatimprovedxylanaseproductionwasmediatedbyXlnR.Thisstudydemonstratesthepotentialofmetabolicmanipulationforincreasedproductionoffungalenzymes.
MappingofresiduesinvolvedintheinteractionbetweentheBacillussubtilisxylanaseAandproteinaceouswheatxylanaseinhibitors.
Sørensen,J.F.&Sibbesen,O.(2006).ProteinEngineeringDesign&Selection,19(5),205-210.
LinktoArticle
ReadAbstract
TheBacillussubtilisxylanaseAwassubjectedtosite-directedmutagenesis,aimedatchangingtheinteractionwithTriticumaestivumxylanaseinhibitor,theonlywheatendogenousproteinaceousxylanaseinhibitorinteractingwiththisxylanase.ThepublishedstructureofBacilluscirculansXynAwasusedtotargetaminoacidssurroundingtheactivesitecleftofB.subtilisXynAformutation.Twenty-tworesiduesweremutated,resultingin62differentvariants.Thecatalyticactivityofactivemutantsrangedfrom563to5635XU/mgandtheinteractionwithT.aestivumxylanaseinhibitorshowedasimilarvariation.TheresultsindicatethatT.aestivumxylanaseinhibitorinteractswithseveralaminoacidresiduessurroundingtheactivesiteoftheenzyme.Threedifferentaminoacidsubstitutionsinoneparticularresidue(D11)completelyabolishedtheinteractionbetweenT.aestivumxylanaseinhibitorandB.subtilisxylanaseA.
SafetyevaluationofaxylanaseexpressedinBacillussubtilis.
Harbak,L.&Thygesen,H.V.(2002).FoodandChemicalToxicology,40(1),1-8.
LinktoArticle
ReadAbstract
Aprogrammeofstudieswasconductedtoestablishthesafetyofaxylanaseexpressedinaself-clonedstrainofBacillussubtilistobeusedasaprocessingaidinthebakingindustry.Toassessacuteandsubchronicoraltoxicity,ratfeedingstudieswereconducted.Inaddition,thepotentialoftheenzymetocausemutagenicityandchromosomalaberrationswasassessedinmicrobialandtissuecultureinvitrostudies.AcuteandsubchronicoraltoxicitywasnotdetectedatthehighestdoserecommendedbyOECDguidelines.Therewasnoevidenceofmutagenicpotentialorchromosomalaberrations.FurThermore,theorganismusedforproductionofthexylanaseisalreadyacceptedassafebyseveralmajornationalregulatoryagencies.
Effectofxylanasesonilealviscosity,intestinalfibermodification,andapparentilealfiberandnutrientdigestibilityofryeandwheatingrowingpigs.
Lærke,H.N.,Arent,S.,Dalsgaard,S.&Knudsen,K.B.(2015).JournalofAnimalScience,93(9),4323-4325.
LinktoArticle
ReadAbstract
Twoexperimentswereperformedtostudytheeffectofxylanaseonilealextractviscosity,invivofibersolubilizationanddegradation,andapparentilealdigestibility(AID)offiberconstituents,OM,CP,starch,andcrudefatinryeandwheatinileal-cannulatedpigs.InExp.1,coarseryewithout(NX)orwithadditionofxylanasefromAspergillusniger(AN),Bacillussubtilis(BS),orTrichodermareesei(TR)wasfedto8ileal-cannulatedbarrows(initialBW30.9±0.3kg)for1wkeachaccordingtoadouble4×4Latinsquaredesign.InExp.2,finerye,finewheat,andcoarsewheatwithorwithoutacombinationofxylanasefromBacillussubtilisandTrichodermareeseiwerefedto6ileal-cannulatedbarrows(initialBW33.6±0.5kg)for1wkaccordingtoa6×6Latinsquaredesignwitha2×3factorialarrangementofenzymeandcerealmatrix.Chromicoxide(0.2%)wasusedasaninertMarker.Ilealeffluentwascollectedfor8hond5and7andpooledforanalysis.InExp.1,TRreducedintestinalviscosityofpigsfedryefrom9.3mPa·sinthecontroldiet(NX)to6.0mPa·s(P <0.001),=""whereas=""an=""and=""bs=""had=""no=""effect.=""none=""of=""the=""enzymes=""changed=""the=""concentration=""of=""total=""arabinoxylan,=""high-molecular-weight=""arabinoxylan=""(hmw-ax),=""or=""arabinoxylan=""oligosaccharides=""(axos)=""in=""the=""liquid=""phase=""of=""digesta.=""in=""exp.=""2,=""the=""enzyme=""combination=""reduced=""intestinal=""viscosity=""for=""all=""3=""cereal=""matrices="">P <0.05),=""but=""the=""viscosity=""was=""much=""higher=""with=""fine=""rye=""(7.6=""mpa·s)=""than=""with=""fine=""and=""coarse=""wheat=""><1.7 mpa·s).="" simultaneously,="" the="" total="" concentration="" of="" arabinoxylan="" in="" the="" liquid="" phase="" of="" digesta="" increased="" by="" 82.4%="" in="" fine="" wheat="">1.7>P <0.002)=""and=""by=""45.9%=""in=""coarse=""wheat="">P <0.006),=""and=""axos=""increased=""16-fold=""with=""enzyme=""addition.=""similar=""effects=""of=""enzyme=""were=""not=""seen=""with=""rye.=""the=""concentration=""of=""xylooligosaccharides=""in=""the=""liquid=""phase=""of=""digesta=""increased=""with=""enzyme=""addition,=""but=""for=""xylose,=""it=""was=""only=""significant=""for=""wheat,=""for=""which=""it=""increased=""3.9-fold="">P <0.001).=""none=""of=""the=""xylanases=""affected=""aid=""of=""arabinoxylan=""of=""rye=""in=""exp.=""1.=""in=""exp.=""2,=""the=""enzyme=""combination=""increased=""aid=""of=""arabinoxylan=""by=""91%=""to=""107%="">P <0.001)=""across=""cereal=""matrices.=""enzyme=""addition=""did=""not=""affect=""aid=""of=""nutrients=""in=""any=""of=""the=""experiments=""except=""for=""a=""higher=""starch=""and=""crude=""fat=""digestibility=""of=""fine=""wheat=""with=""enzyme=""addition="">P <0.012)=""in=""exp.=""2.=""collectively,=""the=""results=""suggest=""that=""xylanase=""is=""more=""efficient=""in=""degrading=""arabinoxylan=""from=""wheat=""than=""from=""rye.="">
RecentAdvancesandfuturePerspectivesofThermostableXylanase.
Selvarajan,E.&Veena,R.(2017).BiosciencesBiotechnologyResearchAsia,14(1),421-438.
LinktoArticle
ReadAbstract
Thexylandegradingenzyme,xylanasecanbeusedtodevelopeco-friendlytechnologiesmainlyinthepaperandpulpindustries.Byusingthisenzyme,thelignocellulosesmaterialscanbemodifiedtoproducehighqualityliquidfuelandotherproducts.Thereisawiderangeofapplicationsforthexylanaseasanenzymeandmorewiththermostablexylanase.TheFungalstrainsareconsideredmostpotentforxylanaseproduction,whiletheyeastandbacteriaproduceitinlowquantities.Theproductionoftheseenzymes,atlowquantity,canbefurtherenhancedbytheGeneticengineeringtechniqueslikemutation,cloningandexpressioninvariousorganisms.Thegenomicstudieshavehelpedtocomeacrossthebasicbarrierslikelowproduction,enzymestabilityetc.Thexylanaseproducinggeneisisolatedinmicroorganisms,mademodificationsandisclonedintoaheterologousorahomologoushostfortheenhancedproduction,tomeettheindustrialdemand.Thusthisreviewconcentratesabouttheproductionparameters,immobilizationtechniquesandtheapplicationsbriefly.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们