Megazyme/Xylazyme AX Tablets/T-XAX-1000T/1,000 Tablets
商品编号:
T-XAX-1000T
品牌:
Megazyme INC
市场价:
¥23712.00
美元价:
14227.20
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedXylazymeAX(60mgtablets)forthemeasurementofenzymeactivity,forresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Fortheassayofendo-1,4-β-D-xylanase.ContainingAZCL-arABInoxylan(wheat).
Novelsubstratesfortheautomatedandmanualassayofendo-1,4-β-xylanase.
Mangan,D.,Cornaggia,C.,Liadova,A.,McCormack,N.,Ivory,R.,McKie,V.A.,Ormerod,A.&McCleary,D.V.(2017).CarbohydrateResearch,445,14-22.
LinktoArticle
ReadAbstract
endo-1,4-β-Xylanase(EC3.2.1.8)isemployedacrossabroadrangeofindustriesincludinganimalfeed,brewing,baking,biofuels,detergentsandpulp(paper).Despiteitsimportance,arapid,reliable,reproducIBLe,automatableassayforthisenzymethatisbasedontheuseofachemicallydefinedsubstratehasnotbeendescribedtodate.Reportedhereinisanewenzymecoupledassayprocedure,termedtheXylX6assay,thatemploysanovelsubstrate,namely4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-45-O-glucosyl-xylopentaoside.ThedevelopmentofthesubstrateandassociatedassayisdiscussedhereandtherelationshipbetweentheactivityvaluesobtainedwiththeXylX6assayversustrADItionalreducingsugarassaysanditsspecificityandreproducibilitywerethoroughlyinvestigated.
Comparisonofendolytichydrolasesthatdepolymerise1,4-β-D-mannan,1,5-α-L-arabinanand1,4-β-D-galactan.
McCleary,B.V.(1991).“EnzymesinBiomassConversion”,(M.E.HimmelandG.F.Leatham,Eds.),ACSSymposiumSeries460,Chapter34,pp.437-449.AmericanChemicalSociety,Washington.
LinktoArticle
ReadAbstract
Hydrolysisofmannan-typepolysaccharidesbyβ-mannanaseisdependentonsubstitutiononandwithinthemain-chainaswellasthesourceoftheβ-mannanaseemployed.Characterisationofreactionproductscanbeusedtodefinethesub-sitebindingrequirementsoftheenzymesaswellasthefine-structuresofthepolysaccharides.Actionofendo-arabinanaseandendo-galactanaseonarabinansandarabinogalactansisdescribed.Specificassaysforendo-arabinanaseandarabinan(infruit-juiceconcentrates)arereported.
Measurementofendo-1,4-β-D-xylanase.
McCleary,B.V.(1992).“XylansandXylanases”,(J.Visser,G.Beldman,M.A.Kusters-vanSomeronandA.G.J.Voragen,Eds.),ProgressinBiotechnologyVol.7,Elsevier,SciencePublishersB.V.,pp.161-169.
LinktoArticle
ReadAbstract
Variousproceduresforthemeasurementofxylanaseinfermentationbroths,commercialenzymemixtures,breadimprovermixturesandfeedsamplesaredescribed.Problemsassociatedwiththeroutineuseofreducing-sugarbasedmethodsaxehighlightedandtheadvantagesandlimitationsofviscometricanddye-labelledsubstrateproceduresformeasurementoftracelevelsofactivityinfeedsamplesarediscussed.
Measurementofpolysaccharidedegradingenzymesusingchromogenicandcolorimetricsubstrates.
McCleary,B.V.(1991).ChemistryinAustralia,58,398-401.
LinktoArticle
ReadAbstract
Enzymicdegradationofcarbohydratesisofmajorsignificanceintheindustrialprocessingofcerealsandfruits.Intheproductionofbeer,barleyisgerminatedunderwelldefinedconditions(malting)toinducemaximumenzymesynthesiswithminimumrespirationofreservecarbohydrates.Thegrainsaredriedandthenextractedwithwaterundercontrolledconditions.Theamylolyticenzymessynthesizedduringmalting,aswellasthosepresentintheoriginalbarley,convertthestarchreservestofermentablesugars.Otherenzymesactonthecellwallpolysaccharides,mixed-linkageβ-glucanandarabinoxylan,reducingtheviscosityandthusaidingfiltration,andreducingthepossibilityofsubsequentprecipitationofpolymericmaterial.Inbaking,β-amylaseandα-amylasegivecontrolleddegradationofstarchtofermentablesugarssoastosustainyeastgrowthandgasproduction.Excessquantitiesofα-amylaseintheflourresultinexcessivedegradationofstarchduringbakingwhichinturngivesastickycrumbtextureandsubsequentproblemswithbreadslicing.Juiceyieldfromfruitpulpissignificantlyimprovedifcell-walldegradingenzymesareusedtodestroythethree-dimensionalstructureandwaterbindingcapacityofthepecticpolysaccharidecomponentsofthecellwalls.Problemsofroutineandreliableassayofcarbohydratedegradingenzymesinthepresenceofhighlevelsofsugarcompoundsareexperiencedwithsuchindustrialprocess.
Optimisingtheresponse.
Acamovic,T.&McCleary,B.V.(1996).FeedMix,4,14-19.
LinktoArticle
ReadAbstract
Afinebalanceexistsbetweenenzymeactivityandtheadverseeffectsassociatedwithfeedprocessing.Accurateestimationofenzymeactivityinthefeedisapre-requisitetooptimisingtheresponse.
Cloningandcharacterizationofarabinoxylanarabinofuranohydrolase-D3(AXHd3)fromBifidobacteriumadolescentisDSM20083.
VandenBroek,L.A.M.,Lloyd,R.M.,Beldman,G.,Verdoes,J.C.,McCleary,B.V.&Voragen,A.G.J.(2005).AppliedMicroBIOLOGyandBiotechnology,67(5),641-647.
LinktoArticle
ReadAbstract
Arabinoxylanarabinofuranohydrolase-D3(AXHd3)fromBifidobacteriumadolescentisreleasesonlyC3-linkedarabinoseresiduesfromdouble-substitutedxyloseresidues.AgenomiclibraryofB.adolescentisDSM20083wasscreenedforthepresenceoftheaxhD3gene.TwoplasmidswereidentifiedcontainingpartoftheaxhD3gene.Thenucleotidesequenceswerecombinedandthreeopenreadingframes(ORFs)werefound.ThefirstORFshowedhighhomologywithxylanasesbelongingtofamily8oftheglycosidehydrolasesandthisgenewasdesignatedxylA.ThesecondORFwastheaxhD3genebelongingtoglycosidehydrolasefamily43.Thethird(partial)ORFcodedforaputativecarboxylesterase.TheaxhD3genewasclonedandexpressedinEscherichiacoli.SeveralsubstrateswereemployedinthebiochemicalcharacterizationofrecombinantAXHd3.Theenzymeshowedthehighestactivitytowardwheatarabinoxylanoligosaccharides.Inaddition,β-xylanasefromTrichodermasp.wasabletodegradesolublewheatarabinoxylanpolymertoahigherextent,afterpretreatmentwithrecombinantAXHd3.ArabinoxylanoligosaccharidesincubatedwithacombinationofrecombinantAXHd3andanα-L-arabinofuranosidasefromAspergillusnigerdidnotresultinahighermaximalreleaseofarabinosethanincubationwiththeseenzymesseparately.
RecombinantexpressionandcharacterizationofXynDfromBacillussubtilissubsp.subtilisATCC6051:aGH43arabinoxylanarabinofuranohydrolase.
Bourgois,T.M.,VanCraeyveld,V.,VanCampenhout,S.,Courtin,C.M.,Delcour,J.A.,Robben,J.&Volckaert,G.(2007).AppliedMicrobiologyandBiotechnology,75(6),1309-1317.
LinktoArticle
ReadAbstract
ThecompletegenomesequenceofBacillussubtilisrevealsthatsequencesencodingseveralhemicellulasesareco-localisedwithagene(xynD)encodingaputativefamily43glycosidehydrolasethathasnotyetbeencharacterised.Inthiswork,xynDhasbeenisolatedfromgenomicDNAofB.subtilissubsp.subtilisATCC6051andclonedforcytoplasmaticexpressioninEscherichiacoli.RecombinantXynD(rXynD)waspurifiedusingion-exchangechromatographyandgelpermeationchromatography.Theenzymehadamolecularmassofapproximately52kDa,ap/above9.0andreleasesα-L-arabinosefromarabinoxylo-oligosaccharidesaswellasarabinoxylanpolymerswithvaryingdegreeofsubstitution.Usingpara-nitrophenyl-α-L-arabinofuranosideassubstrate,maximumactivitywasobservedatpH5.6and45°C.TheenzymeretaineditsactivityoveralargepHrange,whileactivitywaslostafterpre-incubationabove50°C.Gas–liquidchromatographyandprotonnuclearmagneticresonancespectrometryanalysisindicatedthatrXynDspecificallyreleasesarabinofuranosylgroupsfrommono-substitutedC-(O)-2andC-(O)-3xylopyranosylresiduesonthexylanbackbone.AsrXynDdidnotdisplayendoxylanase,xylosidaseorarabinanaseactivityandwasinactiveonarabinan,weconcludethatthisenzymeisbestdescribedasanarabinoxylanarabinofuranohydrolase.
Variabilityinthereleaseoffreeandboundhydroxycinnamicacidsfromdiversemaltedbarley(HordeumvulgareL.)cultivarsduringwortproduction.
Vanbeneden,N.,Gils,F.,Delvaux,F.&Delvaux,F.R.(2007).JournalofAgriculturalandFoodChemistry,55(26),11002-11010.
LinktoArticle
ReadAbstract
Volatilephenolshavelongbeenrecognizedasimportantflavorcontributorstothearomaofvariousalcoholicbeverages.Thetwomainflavor-activevolatilephenolsinbeerare4-vinylguaiacoland4-vinylphenol.Theyarethedecarboxylationproductsoftheprecursorsferulicacidandp-coumaricacid,respectively,whicharereleasedduringthebrewingprocess,mainlyfrommalt.Inthisstudy,thevariabilityinthereleaseoffreeandester-boundhydroxycinnamicacidsfromninemaltedbarley(HordeumvulgareL.)varietiesduringwortproductionwasinvestigated.Alargevariabilitybetweendifferentbarleymaltsandtheircorrespondingwortswasobserved.Differenceswerealsofoundbetweenfreeferulicacidlevelsfromidenticalmaltvarietiesoriginatingfromdifferentmalthouses.Duringmashing,freehydroxycinnamicacidsinwortarebothwater-extractedandenzymaticallyreleasedbycinnamoylesteraseactivity.Esteraseactivitiesclearlydifferbetweendifferentbarleymaltvarieties.Multiplelinearregressionanalysisshowedthatthereleaseofferulicacidduringmashingdidnotdependonlyonthebarleymaltesteraseactivitybutalsoontheamountofester-boundferulicacidinitiallypresentinthewortandonitsendoxylanaseactivity.Thestudydemonstratestheimportanceofselectingasuitablemaltvarietyasthefirstmeansofcontrollingthefinalvolatilephenollevelsinbeer.
Variabilityinthestructureofryeflouralkali-extractablearabinoxylans.
Verwimp,T.,VanCraeyveld,V.,Courtin,C.M.&Delcour,J.A.(2007).JournalofAgriculturalandFoodChemistry,55(5),1985-1992.
LinktoArticle
ReadAbstract
Thevariabilityinryeflouralkali-extractablearabinoxylan(AE-AX)structureswasexaminedbyextensivefractionationandenzymicdegradationstudies.AXwereisolatedfromdestarchedryewater-unextractablesbysequentialextractionwithsaturatedbariumhydroxidesolution,water,1.0Msodiumhydroxide,andwater.TheisolatedAE-AXcontainedca.51%AXwithanarabinosetoxylose(A/X)ratioof0.71.FractionationoftheisolatedAE-AXbyethanolprecipitationyieldedarangeofAE-AXfractionscontainingAXmoleculeswithdifferentA/Xratiosandsubstitutionpatterns.DegradationofthesestructurallydifferentAE-AXfractionsbyanAspergillusaculeatusendoxylanase(XAA)andaBacillussubtilisendoxylanase(XBS)resultedinAXfragmentswithvariousstructuralfeatures.FurtherfractionationofthedegradedAE-AXfractionsbyethanolprecipitationshowedthatastrongcorrelationexistsbetweenthestructuralfeaturesoftheAXfragments,thatis,averagedegreeofpolymerization(DP)ofthexylanbackbone,A/Xratio,andsubstitutionpattern.ResultsindicatedthattheryeflourAE-AXconsistofacontinuumofstructuresratherthanoftwotypesofAXortwotypesofregionsintheAXmolecule.
Impactofwheatflour-associatedendoxylanasesonarabinoxylanindoughaftermixingandresting.
Dornez,E.,Gebruers,K.,Cuyvers,S.,Delcour,J.A.&Courtin,C.M.(2007).JournalofAgriculturalandFoodChemistry,55(17),7149-7155.
LinktoArticle
ReadAbstract
Theimpactofvaryinglevelsofendoxylanaseactivityinwheatflouronarabinoxylan(AX)inmixedandresteddoughwasstudiedusingeightindustriallymilledwheatflourfractionswithvaryingendoxylanaseactivitylevels.Analysisofthelevelsofreducingendxylose(RX)andsolubilizedAX(S-AX)formedduringmixingandrestingandtheircorrelationwiththeendoxylanaseactivityintheflourmillingfractionsshowedthatsolubilizationofAXduringthemixingphaseismainlyduetomechanicalforces,whilesolubilizationofAXduringrestingiscausedbyendoxylanaseactivity.Moreover,solubilizationofAXduringthedoughrestingphaseismoreoutspokenthanthatduringthemixingphase.Besidesendoxylanaseactivity,thereweresignificantxylosidaseandarabinofuranosidaseactivitiesduringthedoughrestingphase.Theresultsindicatethatwheatflour-associatedendoxylanasescanalterpartoftheAXindough,therebychangingtheirfunctionalityinbreadmakingandpotentiallyaffectingdoughandendproductproperties.
AnaccuratenormalizationstrategyforRT-qPCRinHypocreajecorina(Trichodermareesei).
Steiger,M.G.,Mach,R.L.&Mach-Aigner,A.R.(2010).JournalofBiotechnology,145(1),30-37.
LinktoArticle
ReadAbstract
Hypocreajecorinaisanimportant,filamentousfungusduetoitseffectiveproductionofhydrolyticenzymes.Geneexpressionstudiesprovidedeeperinsightintoenvironmentsensingandcellularresponsemechanisms.Reversetranscription-quantitativePCRisagene-specificandpowerfultooltomeasureevenminorchangesinmRNAcomposition.Anaccuratenormalizationstrategyisabsolutelynecessaryforappropriateinterpretationofreversetranscription-quantitativePCRresults.Onefrequentlyappliedstrategyistheusageofareferencegene.AdequatereferencegenesforHypocreahavenotbeenpublishedsofar.ByusingtheNormFinderandgeNormsoftwares,weevaluatedthemoststablegenesamongstsixpotentialreferencegenesin34samplesfromdiversecultivationconditions.Underthoseexperimentalconditions,sar1encodingforasmallGTPasewasfoundtobethemoststablegene,whereasactencodingforactinwasnotamongstthebestvalidatedones.Theinfluenceofthereferencesystemontheexpressiondataisdemonstratedbyanalysisoftwotargetgenes,encodingfortheXylanaseregulator1andforXylanaseII.Wefurthervalidatedobtainedxylanase2transcriptionrateswiththecorrespondingenzymeactivity.
Xylanasesfrommicrobialorigininducesyrupformationindough.
DeSchryver,P.,Sesena,S.,Decaigny,B.,VandeWiele,T.,Verstraete,W.&Boon,N.(2008).JournalofCerealScience,47(1),18-28.
LinktoArticle
ReadAbstract
Syrupformationinrefrigerateddoughsisaproblemsinceitreducesthedoughs’shelflife.Microbialexogenousxylanasesassociatedwithwheatkernelswerefoundtoplayaroleinthissyrupingphenomenon.Usingxylanase-producingmicroorganismsisolatedfromwheatkernels,weinvestigatedtheirpotencytoinducesyrupingindough.GrowthofthefungalxylanaseproducerFusariumsp.(102colonyformingunits(CFU)/gdough)andthebacterialxylanaseproducerPaenibacillussp.(104CFU/gdough)insyntheticmediaandtheirrespectiveadditiontowheatdoughcouldnotbringaboutasignificantamountofsyruping.However,whenthesespeciesweregrownonmoistwheatkernelsandanextractofthesekernelscontainingboththeorganismsanditsxylanaseswasmadeandaddedtodough,intensivesyrupingwasnoted.Thiseffectwasprimarilyattributedtothexylanasespresentintheextract.Thesefindingssuggestthattheinvolvementofxylanase-producingmicroorganismsinthesyrupingphenomenonissituatedpriortoharvest.Additionalquantitativeanalysesofmicrobialbiomasspresentonwheatkernelsrevealedthatthefungiinparticularcouldbecorrelatedtohighermicrobialexogenousxylanaseactivitiesonwheat.Ourresultsindicatethatthesyrupingislinkedtofungalxylanaseproductiononthewheatkernelsinthefield.
Transcriptionalregulationofxyr1,encodingthemainregulatorofthexylanolyticandcellulolyticenzymesysteminHypocreajecorina.
Mach-Aigner,A.R.,Pucher,M.E.,Steiger,M.G.,Bauer,G.E.,Preis,S.J.&Mach,R.L.(2008).AppliedandEnvironmentalMicrobiology,74(21),6554-6562.
LinktoArticle
ReadAbstract
InHypocreajecorina,Xyr1(xylanaseregulator1)isthemaintranscriptionactivatorofhydrolase-encodinggenes,suchasxyn1,xyn2,bxl1,cbh1,cbh2,egl1,andbgl1.EventhoughXyr1mediatestheinductionsignalforallthesegenesderivedfromvariousinducingcarbonsourcesandcompounds,xyr1transcriptionitselfisnotinduciblebyanyofthesesubstances.However,cultivationonglucoseasthecarbonsourceprovokescarboncataboliterepressionofxyr1transcriptionmediatedbyCre1.Inaddition,xyr1transcriptionisrepressedbythespecifictranscriptionfactorAce1.Moreover,Xyr1ispermanentlyavailableinthecell,andnodenovosynthesisofthisfactorisneededforafirstinductionofxyn1transcription.Theconstitutiveexpressionofxyr1leadstoasignificantelevation/deregulationofthexyn1,xyn2,andbxl1transcriptioncomparedtowhatisseenfortheparentalstrain.Overall,thecorrespondingxylanolyticenzymeactivitiesareclearlyelevatedinaconstitutivelyxyr1-expressingstrain,emphasizingthisfactorasanaUSPicioustargetforgeneticallyengineeredstrainimprovement.
Ascreeningmethodforendo-β-1,4-xylanasesubstrateselectivity.
Moers,K.,Courtin,C.M.,Brijs,K.&Delcour,J.A.(2003).AnalyticalBiochemistry,319(1),73-77.
LinktoArticle
ReadAbstract
Endoxylanase(EC3.2.1.8)substrateselectivity,i.e.,itsrelativeactivitytowardwater-unextractablearabinoxylan(WU-AX)andwater-extractablearabinoxylan(WE-AX)substrates,isimportantforitsfunctionalityinbiotechnologicalprocessessuchasbread-makingandglutenstarchseparation.Ascreeningmethodforrapidlydeterminingsaidsubstrateselectivitywasdeveloped.EndoxylanaseactivitytowardWU-AXwasestimatedbyincubationofinsolublechromogenicsubstratewitharangeofenzymeconcentrationsinmicrotiterplates,followedbycolorimetricmeasurementofthedyereleasedinthesupernatant.AsimilarapproachusingsolublesubstrateandethanolprecipitationofunhydrolysedAXfragmentswasusedtoestimateenzymeactivitytowardWE-AX.Asubstrateselectivityfactorwasdefinedastheratioofenzymeactivitytowardinsolublesubstrateoverenzymeactivitytowardsolublesubstrate.ABacillussubtilisandanAspergillusaculeatusendoxylanase,knowntohavewidelyvaryingrelativeratesofhydrolysisofWU-AXandWE-AX,variedmostintheirsubstrateselectivity,whiletheendoxylanasesofAspergillusniger,Trichodermalongibrachiatum,andTrichodermaviridedisplayedintermediatesuchrelativeactivities.
Xyr1receivesthelactoseinductionsignalandregulateslactosemetabolisminHypocreajecorina.
Stricker,A.,R.,Steiger,M.,G.&Mach,R.,L.(2007).FEBSLetters,581(21),3915-3920.
LinktoArticle
ReadAbstract
ThisstudyreportsthevitalregulatoryinfluenceofXyr1(xylanaseregulator1)onthetranscriptionofhydrolyticenzyme-encodinggenesandhydrolaseformationonlactoseinHypocreajecorina.Whilethetranscriptionofthexyr1geneitselfisachievedbyreleaseofcarboncataboliterepression,thetranscriptformationofxyr1(xylanase1)isregulatedbyanadditionalinductionmechanismmediatedbylactose.Xyr1hasanimportantimpactonlactosemetabolismbydirectlyactivatingxyr1(xylosereductase1)transcriptionandindirectlyinfluencingtranscriptionofbga1(β-galactosidase1).ThelatterisachievedbyregulatingtheconversionofD-galactosetotheinducingcarbonsourcegalactitol.
Multi-carbohydraseandphytasesupplementationimprovesgrowthperformanceandliverinsulinreceptorsensitivityinbroilerchickensfeddietscontainingfull-fatrapeseed.
Józefiak,D.,Ptak,A.,Kaczmarek,S.,Maćkowiak,P.,Sassek,M.&Slominski,B.A.(2010).PoultryScience,89(9),1939-1946.
LinktoArticle
ReadAbstract
Theeffectofacombinationofcarbohydraseandphytaseenzymesongrowthperformance,insulin-likegrowthfactor1geneexpression,insulinstatus,andinsulinreceptorsensitivityinbroilerchickensfedwheat-soybeanmealdietscontaining6%(starter)and12%(grower-finisher)offull-fatrapeseed(canolatype;lowglucosinolate,lowerucicacid)from1to42dofagewasstudied.Atotalof510one-day-oldmalebroilerchickenswererandomlyassignedto3dietarytreatments,with17penspertreatmentand10birdsperpen.ThedietarytreatmentsconsistedofacontroldietandP-andCa-deficientdietssupplementedwitheitherphytase(500U/kg)oracombinationofphytaseandamulti-carbohydraseenzyme(SuperzymeOM).Thedietswerepelletedat78°Candwerefedadlibitumthroughoutthestarter(9d),grower(18d),andfinisher(15d)phasesoftheexperiment.Overtheentiretrial,growthperformanceofbirdsfedthephytase-supplementeddietdidnotdifferfrombirdsfedthecontroldiet.Theuseofphytaseincombinationwithamulticarbohydraseenzymeimproved(P=0.007)thefeedconversionratiofrom1.90to1.84.Insulinliverreceptorsensitivityincreasedby9.3and12.3%(P=0.004)forthephytase-andthecarbohydrase-phytase-supplementeddiets,respectively.Therewasnoeffectofphytasealoneorcarbohydraseandphytasesupplementationontotalplasmacholesterol,high-densitylipoproteincholesterol,andbloodglucoselevels.However,low-densitylipoproteincholesteroldecreased(P=0.007)forthephytase-carbohydrasetreatment.Geneexpressionofinsulin-likegrowthfactor1tendedtodecreaseby32%(P=0.083)afterphytase-carbohydrasesupplementation.Thecombinationofcarbohydraseandphytaseenzymesmayserveasanattractivemeansoffacilitatingnutrientavailabilityfordigestionandthusenhancethefeedingvalueofwheat-soybeanmeal-baseddietscontainingfull-fatrapeseed.However,theextenttowhichtheeffectsofenzymeadditiononinsulinreceptorsareassociatedwithgrowthperformanceofbroilerchickenrequiresfurtherresearch.
Partialpurificationofcomponentsinryewaterextractableswhichimprovethequalityofoatbread.
Pauly,A.&Delcour,J.A.(2018).JournalofCerealScience,79,141-147.
LinktoArticle
ReadAbstract
Unlikewheatbread,thedoughofwhichhasavisco-elasticnetworkandhighgas-holdingcapacity,oatbreadgenerallyhasalowvolumeandadensestructure.Weshowedearlierthatincludingryewater-extractablecomponentsinanoatbreadbatterrecipeincreasesloafvolumebyca.30%(PaulyandDelcour,submittedasback-to-backpublication).Weherereportoneffortstoidentifytheactivefactor(s).Anionexchangechromatographyallowedenrichingtheactivefactor(s).Thisandthefactthatonlyalimitedvolumeincreasewasobservedwhenoatbatterwassupplementedwithboiledryeextractindicatethatproteinsarelikelythemostimportantcomponentsresponsibleforthevolumeincrease.Whilethemostactivefactor(s)hadapIbelow4.5,componentswithpIvaluesbetween4.5and8.5alsocontributedtooatloafvolume.Alkalineryecomponents(pI>8.5)orryearabinoxylanhadnoimpact.Ryewater-extractablecomponentssmallerthan6–8kDaalsohadapositiveimpactonloafvolume.
Impactofwater-extractablecomponentsfromdifferentcerealsonthequalityofoatbread.
Pauly,A.&Delcour,J.A.(2018).JournalofCerealScience,79,134-140.
LinktoArticle
ReadAbstract
Loafvolumeandcrumbstructureofoatbreadarenotcomparabletothoseofbreadfromwheatflour.Hydrocolloids,surfactantsand/orenzymesareoftenincludedinoatbatterrecipesforqualityenhancementreasons.Inthisstudy,weexaminedtheimpactofwater-extractablecomponentsfrombarley,oat,ryeandwheatflouronoatbreadquality.Wespeculatedthatsuchwaterextractscontaincomponentswhichalsowouldenhancethequalityofoatbread.Asexpected,extractprotein,non-starchpolysaccharide,lipidandenzymelevelsvariedwidelyamongstthedifferentcerealfloursused.Theextractsalsovariedinfoamingpropertiesandextractviscosities.Ryeflourcontainedthehighestlevelofwater-extractablecomponents.Inclusionofryeaqueousextractresultedinthelargestloafvolumeincreaseandinsoftercrumbthannotedforcontroloatbread.Rheofermentometeranalysesshowedthatthemomentofgascellopeningwasdelayedwhenryeextractwasadded,indicatingimprovedbattergascellstabilization,whilecollapseduringbakingwasnotaffected.Theoatbreadimprovingeffectoftheryeextractislikelyduetoacombinationoftheimpactofdifferentofitsconstituentssuchasenzymesandsurfaceactivecomponents.
ValidationofMethods
RACIStandardMethod
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们