Megazyme/AZCL直链淀粉/I-AZAMY/5克
商品编号:
I-AZAMY
品牌:
Megazyme INC
市场价:
¥3288.00
美元价:
1972.80
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCL-Amyloseforidentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Dyedandcrosslinkedamylose.Substratefortheassayofα-amylase.
Newchromogenicsubstratesfortheassayofalpha-amylaseand(1→4)-β-D-glucanase.
McCleary,B.V.(1980).CarbohydrateResearch,86(1),97-104.
LinktoArticle
ReadAbstract
Newchromogenicsubstrateshavebeendevelopedforthequantitativeassayofalpha-amylaseand(1→4)-β-D-glucanase.Thesewerepreparedbychemicallymodifyingamyloseorcellulosebeforedyeing,toincreasesolubility.Afterdyeing,thesubstrateswereeithersolubleorcouldbereADIlydispersedtoformfine,gelatinoussUSPensions.Assaysbasedontheuseofthesesubstratesaresensitiveandhighlyspecificforeitheralpha-amylaseor(1→4)-β-D-glucanase.Themethodofpreparationcanalsobeappliedtoobtainsubstratesforotherendo-hydrolases.
Purificationandcharacterisationoftwoextremelyhalotolerantxylanasesfromanovelhalophilicbacterium.
Wejse,P.L.,Ingvorsen,K.&Mortensen,K.K.(2003).Extremophiles,7(5),423-431.
LinktoArticle
ReadAbstract
Thepresentworkreportsforthefirsttimethepurificationandcharacterisationoftwoextremelyhalotolerantendo-xylanasesfromanovelhalophilicbacterium,strainCL8.Purificationofthetwoxylanases,Xyl1and2,wasachievedbyanionexchangeandhydrophobicinteractionchromatography.Theenzymeshadrelativemolecularmassesof43kDaand62kDaandpIof5.0and3.4respectively.StimulationofactivitybyCa+2,Mn+2,Mg+2,Ba+2,Li+2,NaN3,andisopropanolwasobserved.TheKmandVmaxvaluesdeterminedforXyl1with4-O-methyl-D-glucuronoxylanare5mg/mland125,000nkat/mgrespectively.ThecorrespondingvaluesforXyl2were1mg/mland143,000nkat/mgprotein.Xylobioseandxylotriosewerethemajorendproductsforbothendoxylanases.ThexylanaseswerestableatpH4–11showingpHoptimaaroundpH6.Xyl1showsmaximalactivityat60°C,Xyl2at65°C(at4MNaCl).ThexylanasesshowedhightemperaturestABIlitywithhalf-livesat60°Cof97minand192minrespectively.Bothxylanasesshowedoptimalactivityat1MNaCl,butsubstantialactivityremainedforbothenzymesat5MNaCl.
Productionofcyclomaltononaose(δ-cyclodextrin)bycyclodextringlycosyltransferasesfromBacillusspp.andbacterialisolates.
Larsen,K.L.,Christensen,H.J.S.,Mathiesen,F.,Pedersen,L.H.&Zimmermann,W.(1998).AppliedMicrobiologyandBiotechnology,50(3),314-317.
LinktoArticle
ReadAbstract
Theconversionofsolublestarchtocyclomaltohexaose(α-CD),cyclomaltoheptaose(β-CD),cyclomaltooctaose(γ-CD)andcyclomaltononaose(δ-CD)bycyclodextringlycosyltransferases(E.C.2.4.1.19)fromBacillusspp.andbacterialisolateswasstudied.Theresultsshowthatδ-CDwasformedbyalltheenzymesinvestigatedintherangeof5%–11.5%ofthetotalamountofα-,β-,γ-,andδ-CDproduced.
AssessmentofBacilluslicheniformisα-amylaseasacandidateenzymeforgeneticengineeringofmaltingbarley.
Vickers,J.E.,Hamilton,S.E.,Jersey,J.D.,Henry,R.J.,Marschke,R.J.&Inkerman,P.A.(1996).JournaloftheInstituteofBrewing,102(2),75-78.
LinktoArticle
ReadAbstract
Bacilluslicheniformisα-amylase,aThermostablestarch-degradingenzyme,hasbeenassessedasacandidateenzymeforthegenetictransformationofmaltingbarley.Thetemperatureoptimum,pHoptimumandthermostabilityofB.licheniformisα-amylasewerecomparedwiththoseofbarleyα-amylase.ThebacterialenzymehasahigherpHoptimum(~9),ahighertemperatureoptimum(~90°C)andmuchhigherthermostabilityatelevatedtemperaturesthanthebarleyenzyme.ThespecificactivityofthebacterialenzymeunderconditionsofpHandtemperaturerelevanttothebrewingprocess(pH5.5,65°C)is~1.5-foldhigherthanthatofthebarleyenzyme.Measurementsofα-amylaseactivityduringamicro-mashshowedthatthebacterialenzymeisatleastasstableasthebarleyenzymeundertheseconditions,andthatalevelofexpressionforthebacterialenzymecorrespondingto~0.5%oftotalmaltproteinwouldapproximatelydoubletheα-amylaseactivityinthemash.B.licheniformisα-amylaseactivitywasrapidlyeliminatedbyboilingfollowingmashingaswouldoccurduringbrewing.Thecombinedresultssuggestthatbarleyexpressingthebacterialenzymemaybeusefulinthebrewingprocess.
Hydrolysisofstarchesandfloursbysorghummaltamylasesfordextrinsproduction.
Ba,K.,Aguedo,M.,Tine,E.,Paquot,M.,Destain,J.&Thonart,P.(2013).EuropeanFoodResearchandTechnology,236(5),905-918.
LinktoArticle
ReadAbstract
Cornandwheatstarchesaswellaswheatandcassavaflourswerehydrolyzedusingsorghummaltat65°Cfor6h.Duringthesereactions,dextroseequivalent(DE)valueswerefollowedunderthreeconcentrationsofsorghummaltandcalciumchloride.WheatflourpresentedthehighestDEvaluesandcassavaflourhadthehighesthydrolysisyield.Thus,differentdextrinswereproducedinapilotplantandwereanalyzedbyHPSECandHPAEC-PADfortheirmolecularweightdistributionandoligosaccharidescomposition,respectively.Theresultsindicatedthatoligosaccharideswithbroadmolecularweightdistributionswerepresentinthedextrinsproducedandthattheproportionofmaltosewasveryhigh.
Taxonomicandfunctionaldiversityofpseudomonadsisolatedfromtherootsoffield‐growncanola.
Misko,A.L.&Germida,J.J.(2002).FEMSMicrobiologyEcology,42(3),399-407.
LinktoArticle
ReadAbstract
Amongthemostimportantrhizospherebacteriaarethepseudomonads,whichareaggressivecolonizersandutilizeawiderangeofsubstratesascarbonsources.Theobjectiveofthisstudywastodetermineifthetaxonomicormetabolicdiversityofpseudomonadsdifferedamongfield-growncanolacultivars.Bacteria(n=2257)wereisolatedfromtherhizosphereandrootinteriorofsixcultivarsoffield-growncanola,includingthreetransgenicvarieties.Thebacteriawereidentifiedbyfattyacidmethylester(FAME)analysis,andabout35%wereidentifiedasPseudomonasspecies.ThemostabundantspecieswerePseudomonasputidaandPseudomonaschlororaphis.DendrogramsbasedonFAMEanalysisrevealedthatmanypseudomonadstrainswerefoundinallofthecanolacultivars.Pseudomonadsofthesamestrainwerefoundinboththerhizosphereandtherootinteriorofcanolaplants,suggestingthatendophyticbacteriawereasubsetoftherhizospherecommunity.Becausemetabolicprofilingprovidesmoreusefulinformationthantaxonomy,P.putidaandP.chlororaphisisolateswerecharacterizedfortheirabilitytoutilizecarbonsubstratesandproduceseveralenzymes.Bacteriaisolatedfromdifferentplantcultivarshaddifferentcarbonutilizationprofiles,butwhenonlycarbonsubstratesfoundinrootexudateswereanalyzed,thecultivareffectwaslesspronounced.ThesecharacterizationsalsodemonstratedthatbacteriathatweredeterminedbyFAMEtobethesamestrainweremetabolicallydifferent,suggestingfunctionalredundancyamongPseudomonasisolates.Theresultsofthisstudysuggestthatpseudomonadswerefunctionallydiverse.Theydifferedintheirmetabolicpotentialamongthecanolacultivarsfromwhichtheywereisolated.Becausebacteriacapableofusingmanysubstratescaneffectivelyadapttonewenvironments,theseresultshaveimplicationsfortheuseofpseudomonadsasbiofertilizers,biologicalcontrolagentsandplantgrowth-promotingbacteriaincanola.
Cold-adaptationandalkalinehydrolyticproprietiesofthepolarstreptomycetespredictiononplateassay,basedoninsolublechromogenicsubstrateswithazurinecross-linked.
Cotarlet,M.,Negoită,T.,Bahrim,G.&Stougaard,P.(2008).AnnalsoftheUniversityDunareadeJosofGalati.FascicleVI-FoodTechnology,1(31),17-22.
LinktoArticle
ReadAbstract
Asemi-qualitativescreeningbasedonproteaseandamylaseactivityevaluationinabasalagarmediumsupplementedwithinsolublechromogenicsubstratesbasedonAZCL(Azurine-Crosslinkedwithamyloseorcasein)usingaplateassaywasusedforselectingthepolarstreptomycetesabletoproducecoldactivesandalkalineamylasesandproteases.ThistechniqueprovidesaspecificandrapidsimultaneousdetectionofhighactivehydrolaseproducingstrainsbasedonthevisIBLesolubilizationofsmallparticlesofAZCLandtheformationofhaloesonplates.Ithasagreatpotentialinincreasingtheefficacyofscreeningstreptomycetesabletoproducehydrolyticenzymes.Thisstudyrevealedthepotentialoftheselectedstreptomycetesisolatedfrompolarsoilstobiosynthesizeamylasesandproteasescold-adaptedatlowtemperatures(from5to20°C)andalkalinepHvalues(8to9).
Rapiddetectionofmalto‐oligosaccharide‐formingbacterialamylasesbyhighperformanceanion‐exchangechromatography.
Duedahl‐Olesen,L.,Larsen,K.L.&Zimmermann,W.(2000).LettersinAppliedMicrobiology,30(4),312-316.
LinktoArticle
ReadAbstract
Highperformanceanion-exchangechromatographywithpulsedamperometricdetectionwasappliedfortherapidanalysisofmalto-oligosaccharidesformedbyextracellularenzymepreparationsfrom49starch-degradingbacterialstrainsisolatedfromsoilandcompostsamples.Malto-oligosaccharide-formingamylases,indicatedbyapredominantformationofmaltohexaosefromstarch,wereproducedbyenzymepreparationsfromfouroftheisolatesgrowingatpH7·0and10.
Characterisationofthreestarchdegradingenzymes:Thermostableβ-amylase,maltotetraogenicandmaltogenicα-amylases.
Derde,L.J.,Gomand,S.V.,Courtin,C.M.&Delcour,J.A.(2012).FoodChemistry,135(2),713-721.
LinktoArticle
ReadAbstract
Maltogenicα-amylasefromBacillusstearothermophilus(BStA)iswidelyusedasbreadcrumbanti-firmingenzyme.Amaltotetraose-formingα-amylasefromPseudomonassaccharophila(PSA)wasrecentlyproposedasalternative,hencetheneedtocomparebothexo-actingenzymeswithsomeendo-actioncomponent.Apurelyexo-actingthermostableβ-amylasefromClostridiumthermosulfurogenes(CTB)wasincludedforreferencepurposes.Undertheexperimentalconditionsused,temperatureoptimaoftheenzymesarerathersimilar(60–65°C),buttemperaturestabilitydecreasedintheorderBStA,PSAandCTB.Theactionoftheenzymesondifferentsubstratesandtheirimpactontherheologicalbehaviourofmaizestarchsuspensionsdemonstratedthat,whileCTBactsexclusivelythroughanexo-actionmechanism,BStAdisplayedlimitedendo-actionwhichbecamemorepronouncedathighertemperatures.PSAhasmoresubstantialendo-actionthanBStA,whichisrathertemperatureindependent.Thisisimportantfortheirimpactinprocessessuchasbreadmaking,wheretemperatureisgraduallyincreased.
Insightintothedistributionofarabinoxylans,endoxylanases,andendoxylanaseinhibitorsinindustrialwheatrollermillstreams.
Dornez,E.,Gebruers,K.,Wiame,S.,Delcour,J.A.&Courtin,C.M.(2006).JournalofAgriculturalandFoodChemistry,54(22),8521-8529.
LinktoArticle
ReadAbstract
Togaininsightintothedistributionofarabinoxylans(AX),endoxylanases,andendoxylanaseinhibitorsinindustrialwheatrollermilling,allstreams,thatis,54flourfractions,4branfractions,andthegerm,wereanalyzedforash,starch,andproteincontents,α-amylaseactivitylevels,total(TOT-AX)andwater-extractablearabinoxylan(WE-AX)contents,endoxylanaseactivitylevels,andendoxylanaseinhibitor(TAXIandXIP)contents.Ingeneral,branfractionsweresignificantlyricherinTOT-AXandWE-AXcontents,endoxylanaseactivitylevels,andendoxylanaseinhibitorcontentsthangermand,evenmoreso,thanflourfractions.Inthe54differentflourfractions,minimalandmaximalvaluesforTOT-AXandWE-AXcontentsdifferedbyca.2-fold,whereastheydifferedbyca.15-foldforendoxylanaseactivitylevels.Thelatterwerepositivelycorrelatedwithashandnegativelycorrelatedwithstarchcontent,suggestingthattheendoxylanaseactivityinflourisstronglyinfluencedbythelevelofbrancontamination.TAXIcontentsintheflourfractionsvariedca.4-foldandwerestronglycorrelatedwithbran-relatedparameterssuchasashcontentandenzymeactivitylevels,whereasXIPcontentsvariedca.3-foldandwerenotcorrelatedwithanyoftheparametersmeasuredinthisstudy.Theresultscanbevaluableinblendingandoptimizingwheatflourfractionstoobtainflourswithspecifictechnologicalandnutritionalbenefits.
AnewthermoactivepullulanasefromDesulfurococcusmucosus:cloning,sequencing,purification,andcharacterizationoftherecombinantenzymeafterexpressioninBacillussubtilis.
Duffner,F.,Bertoldo,C.,Andersen,J.T.,Wagner,K.&Antranikian,G.(2000).JournalofBacteriology,182(22),6331-6338.
LinktoArticle
ReadAbstract
ThegeneencodingathermoactivepullulanasefromthehyperthermophilicanaerobicarchaeonDesulfurococcusmucosus(apuA)wasclonedinEscherichiacoliandsequenced.apuAfromD.mucosusshowed45.4%pairwiseaminoacididentitywiththepullulanasefromThermococcusaggregansandcontainedthefourregionsconservedamongallamylolyticenzymes.apuAencodesaproteinof686aminoacidswitha28-residuesignalpeptideandhasapredictedmassof74kDaaftersignalcleavage.TheapuAgenewasthenexpressedinBacillussubtilisandsecretedintotheculturefluid.ThisisoneofthefirstreportsonthesuccessfulexpressionandpurificationofanarchaealamylopullulanaseinaBacillusstrain.Thepurifiedrecombinantenzyme(rapuDm)iscomposedoftwosubunits,eachhavinganestimatedmolecularmassof66kDa.Optimalactivitywasmeasuredat85°CwithinabroadpHrangefrom3.5to8.5,withanoptimumatpH5.0.Divalentcationshavenoinfluenceonthestabilityoractivityoftheenzyme.RapuDmwasstableat80°Cfor4handexhibitedahalf-lifeof50minat85°C.Byhigh-pressureliquidchromatographyanalysisitwasobservedthatrapuDmhydrolyzedα-1,6glycosidiclinkagesofpullulan,producingmaltotriose,andalsoα-1,4glycosidiclinkagesinstarch,amylose,amylopectin,andcyclodextrins,withmaltotrioseandmaltoseasthemainproducts.SincethethermoactivepullulanasesknownsofarfromArchaeaarenotactiveoncyclodextrinsandareinfactinhibitedbythesecyclicoligosaccharides,theenzymefromD.mucosusshouldbeconsideredanarchaealpullulanasetypeIIwithawidersubstratespecificity.
Anexceptionallycold-adaptedalpha-amylasefromametagenomiclibraryofacoldandalkalineenvironment.
Vester,J.K.,Glaring,M.A.&Stougaard,P.(2015).AppliedMicrobiologyandBiotechnology,99(2),717-727.
LinktoArticle
ReadAbstract
Acold-activeα-amylase,Amy13C6,identifiedbyafunctionalmetagenomicsapproachwasexpressedinEscherichiacoliandpurifiedtohomogeneity.SequenceanalysisshowedthattheAmy13C6amylasewassimilartoα-amylasesfromtheclassClostridiaandrevealedclassicalcharacteristicsofcold-adaptedenzymes,asdidcomparisonofthekineticparametersKmandKcattoamesophilicα-amylase.Amy13C6wasshowntobeheat-labile.Temperatureoptimumwasat10–15°C,andmorethan70%oftherelativeactivitywasretainedat1°C.ThepHoptimumofAmy13C6wasatpH8–9,andtheenzymedisplayedactivityintwocommercialdetergentstested,suggestingthattheAmy13C6α-amylasemaybeusefulasadetergentenzymeinenvironmentallyfriendly,low-temperaturelaundryprocesses.
Postharvestneedleabscissionresistanceofbalsamfir(Abiesbalsamea)ismodifiedbyharvestdate.
MacDonald,M.T.,Lada,R.R.,Veitch,R.S.,Thiagarajan,A.,&Adams,A.D.(2014).CanadianJournalofForestResearch,44(11),1394-1401.
LinktoArticle
ReadAbstract
EarlierharvestdateshavebecomenecessaryforCanadianChristmastreeproducerstomeetinternationaldemand,thoughbyharvestingthesetreesearlytheymayexperiencepoorneedleretention.Theobjectiveofthisstudyistounderstandtheeffectofharvestdateonneedleretentionandlinkthosechangestocoldacclimation.Inoneexperiment,balsamfirtreeswithvariedneedleabscissionresistance(NAR)werecollectedinOctoberandinJanuaryandmonitoredforneedleretention.Thiswasrepeatedfor3years.Inasecondexperiment,45brancheswerecollectedeachmonthfromSeptembertoJanuaryandmonitoredforneedleretention,xylempressure,membraneinjury,capacitance,andaccumulationofgalactose,raffinose,andabscisicacid.High-NARtreeshadlittleimprovementinneedleretentionfromOctobertoJanuary,whereaslow-NARtreeshadsignificantlyimprovedneedleretentionfromOctobertoJanuary.BetweenSeptemberandJanuary,therewasan85%increaseinraffinose,147%increaseingalactose,80%increaseinabscisicacid,and62%decreaseinstemcapacitance.Earlyharvestwasnotdetrimentalforalltrees,anditappearsthatcoldacclimationislinkedtopostharvestneedleabscission,thoughcoldacclimationdoesnotadequatelyexplaindifferencesbetweenNARclasses.
Multipleanalysesofmicrobialcommunitiesappliedtothegutofthewood-feedingtermiteReticulitermesflavipesfedonartificialdiets.
Tarayre,C.,Bauwens,J.,Mattéotti,C.,Brasseur,C.,Millet,C.,Massart,S.,Destain,J.,Vandenbol,M.,De Pauw,E.,Haubruge,E.,Francis,F.,Thonart,P.,Portetelle,D.&Francis,F.(2015).Symbiosis,65(3),143-155.
LinktoArticle
ReadAbstract
ThepurposeofthisworkwastheobservationofthedifferencesbetweenthemicrobialcommunitieslivinginthegutofthetermiteReticulitermesflavipesfedondifferentdiets.Thetermiteswerefedonpoplarwood(originaldiet)andartificialdietsconsistingofcrystallinecellulose(withandwithoutlignin),α-cellulose(withandwithoutlignin)andxylan.Thetermiteswerethendissectedandtheprotistcommunitieswereanalyzedthroughmicroscopy,leadingtotheconclusionthatprotistspeciesarestronglyinfluencedbydiets.BIOLOGECOMicroplates®wereusedtoassessthemetabolicpropertiesofthedifferenttypesofconsortia,highlightingstrongdifferencesonthebasisofprincipalcomponentanalysisandcalculationofsimilarityrates.Themicroorganismswerecultivatedinliquidmediacorrespondingtotheartificialdietsbeforebeingcharacterizedthroughametageneticanalysisofgutmicrobiota(16SribosomalDNA).Thisanalysisidentifiedseveralphyla:Acidobacteria,Actinobacteria,Bacteroidetes,Cyanobacteria,Fibrobacteres,Firmicutes,Nitrospirae,OP9,Planctomycetes,Proteobacteria,Spirochaetes,TM6,Tenericutes,VerrucomicrobiaandWS3.TheOTUswerealsodeterminedandconfirmedtheabundanceofProteobacteria,Bacteroidetes,FirmicutesandVerrucomicrobia.Itwaspossibletoisolateseveralstrainsfromtheliquidmedia,andonebacteriumandseveralfungiwerefoundtoproduceinterestingenzymaticactivities.ThebacteriumChryseobacteriumsp.XAvLWproducedα-amylase,β-glucosidase,endo-1,4-β-D-glucanase,endo-1,4-β-D-xylanaseandfilterpaper-cellulase,whilethefungiSarocladiumkilienseCTGxxylandTrichodermavirensCTGxAviLgeneratedthesameactivitiesaddedwithendo-1,3-β-D-glucanase.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们