Megazyme/AZCL阿拉伯多糖(去支链)/I-AZDAR/3克
商品编号:
I-AZDAR
品牌:
Megazyme INC
市场价:
¥3864.00
美元价:
2318.40
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCL-ArABInan(Debranched)foridentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Substratefortheassayofendo-1,5-α-L-arabinanase.
Functionalcloningofanendo-arabinanasefromAspergillusaculeatusanditsheterologousexpressioninA.oryzaeandtobacco.
Skjøt,M.,Kauppinen,S.,Kofod,L.,Fuglsang,C.,Pauly,M.,Dalbøge,H.&Andersen,L.(2001).MolecularGeneticsandGenomics,265(5),913-921.
LinktoArticle
ReadAbstract
Functionalcloninginyeasthasbeenusedtoisolatefull-lengthCDNAsencodinganendo-α-1,5-L-arabinanasefromthefilamentousfungusAspergillusaculeatus.ScreeningofacDNAlibraryconstructedinayeastexpressionvectorfortransformantsthathydrolysedAZCL-arabinanidentified44Saccharomycescerevisiaeclonesallharbouringthesamearabinanase-encodingcDNA.TheclonedcDNAwasexpressedinA.oryzaeandtherecombinantenzymewaspurifiedandcharacterized.Themodeofactionoftheenzymewasstudiedbyanalysisofthedigestionpatterntowardsdebranchedarabinan.Thedigestionprofileobtainedstronglysuggeststhattheenzymeisanendo-arabinanase.Inaddition,thefeasibilityusingNicotianatabacumasanalternativehostforarabinanaseexpressionwasinvestigated.
GeneCloning,Expression,andCharacterizationofaFamily51α-L-ArabinofuranosidasefromStreptomycessp.S9.
Shi,P.,Li,N.,Yang,P.,Wang,Y.,Luo,H.,Bai,Y.&Yao,B.(2010).AppliedBiochemistryandBiotechnology,162(3),707-718.
LinktoArticle
ReadAbstract
Anα-L-arabinofuranosidasegene,abf51S9,wasclonedfromStreptomycessp.S9andsuccessfullyexpressedinEscherichiacoliBL21(DE3).Thefull-lengthgeneconsistedof1,506bpandencoded501aminoacidswithacalculatedmassof55.2kDa.Thededucedaminoacidsequencewashighlyhomologouswiththeα-L-arabinofuranosidasesbelongingtofamily51oftheglycosidehydrolases.TherecombinantproteinwaspurifiedtoelectrophoretichomogeneitybyNi-NTAaffinitychromatographyandsubsequentlycharacterized.TheoptimalpHandtemperaturefortherecombinantenzymewere6.0and60∼65°C,respectively.TheenzymeshowedabroadpHrangeofstability,retainingover75%ofthemaximumactivityatpH5.0to11.0.Thespecificactivity,Km,andVmaxwithp-nitrophenyl-α-L-arabinofuranosideassubstratewere60.0Umg-1,1.45mM,and221µmolmin-1 mg-1,respectively.Abf51S9showedamildbutsignificantsynergisticeffectincombinationwithxylanaseonthedegradationofoat-speltxylanandsolublewheatarabinoxylansubstrateswitha1.19-and1.21-foldincreaseintheamountofreducingsugarreleased,respectively.ThesefavorablepropertiesmakeAbf51S9agoodcandidateinvariousindustrialapplications.
DevelopmentofanimprovedvariantofGH51α-L-arabinofuranosidasefromPleurotusostreatusbydirectedevolution.
Giacobbe,S.,Vincent,F.&Faraco,V.(2014).NewBiotechnology,31(3),230-236.
LinktoArticle
ReadAbstract
Inthisstudy,theα-L-arabinofuranosidasefromPleurotusostreatuswassubjectedtodirectedevolutionbyexpressingalibraryofaround7000randomlymutatedvariantsbyerrorpronePolymeraseChainReaction.High-throughputscreeningofthelibraryforthemostactivevariantswasperformedbyassayingactivitytowardsp-nitrophenylα-L-arabinofuranoside,andavariantwithhigheractivitythanthewildtypewasselected,purifiedandcharacterised.ItexhibitedaKcatof7.3×103±0.3min-1,around3-foldhigherthanthatofthewildtype(2.2×103±0.2min-1),andaKM(0.54±0.06mM)30%lowerthanthatofthewildtype(0.70±0.05mM)towardsthissubstrate.ThemutantalsoshowedimprovedcatalyticpropertiestowardspNP-β-D-glucopyranoside(Kcatof50.85±0.21min−1versus11.0±0.6min-1)anditwasshownabletohydrolyselarcharabinogalactanwhichisnotrecognisedbythewildtype.Themutantwasalsomoreactivethanthewildtypetowardsarabinoxylanandwasabletohydrolysearabinan,whichwasnottransformedbythewildtype.TheabilityofrPoAbfF435Y/Y446Ftohydrolysetheseinsolublesubstratesexpandsitspotentialforapplicationalsotohemicelluloses,whichinsometypesofpretreatmentarerecoveredinsolidfractions.
Cloning,purification,andcharacterizationofaThermostableα-L-arabinofuranosidasefromAnoxybacilluskestanbolensisAC26Sari.
Canakci,S.,Kacagan,M.,Inan,K.,Belduz,A.O.&Saha,B.C.(2008).AppliedMicrobiologyandBiotechnology,81(1),61-68.
LinktoArticle
ReadAbstract
Thegene,AbfAC26Sari,encodinganα-L-arabinofuranosidasefromAnoxybacilluskestanbolensisAC26Sari,wasisolated,cloned,sequenced,andcharacterizated.Onthebasisofaminoacidsequencesimilarities,this57-kDaenzymecouldbeassignedtofamily51oftheglycosylhydrolaseclassificationsystem.Characterizationofthepurifiedrecombinantα-L-arabinofuranosidaseproducedinEscherichiacoliBL21revealedthatitisactiveatabroadpHrange(pH4.5to9.0)andatabroadtemperaturerange(45–85°C)andithasanoptimumpHof5.5andanoptimumtemperatureof65°C.Kineticexperimentat65°Cwithp-nitrophenylα-L-arabinofuranosideasasubstrategaveaVmaxandKm,valuesof1,019U/mgand0.139mM,respectively.Theenzymehadnoapparentrequirementofmetalionsforactivity,anditsactivitywasstronglyinhibitedby1mMCu2+andHg2+.TherecombinantarabinofuranosidasereleasedL-arabinosefromarabinan,arabinoxylan,oatspeltxylan,arabinobiose,arabinotriose,arabinotetraose,andarabinopentaose.Endoarabinanaseactivitywasnotdetected.ThesefindingssuggestthatAbfAC26Sariisanexo-actingenzyme.
Theendo-arabinanaseBcAra1isanovelhost-specificvirulencefactorofthenecroticfungalphytopathogenBotrytiscinerea.
Nafisi,M.,Stranne,M.,Zhang,L.,vanKan,J.&Sakuragi,Y.(2014).MolecularPlant-MicrobeInteractions,27(8),781-792.
LinktoArticle
ReadAbstract
Theplantcellwallisoneofthefirstphysicalinterfacesencounteredbyplantpathogensandconsistsofpolysaccharides,ofwhicharabinanisanimportantconstituent.Duringinfection,thenecrotrophicplantpathogenBotrytiscinereasecretesacocktailofplantcell-wall-degrADIngenzymes,includingendo-arabinanaseactivity,whichcarriesoutthebreakdownofarabinan.Therolesofarabinanandendo-arabinanasesduringmicrobialinfectionwerethusfarelusive.Inthisstudy,thegeneBcara1encodingforanovelα-1,5-L-endo-arabinanasewasidentifiedandtheheterologouslyexpressedBcAra1proteinwasshowntohydrolyzelineararabinanwithhighefficiencywhereaslittleornoactivitywasobservedagainsttheotheroligo-andpolysaccharidestested.TheBcara1knockoutmutantsdisplayedreducedarabinanaseactivityinvitroandsevereretardationinsecondarylesionformationduringinfectionofArabidopsisleaves.TheseresultsindicatethatBcAra1isanovelendo-arabinanaseandplaysanimportantroleduringtheinfectionofArabidopsis.Interestingly,thelevelofBcara1transcriptwasconsiderablylowerduringtheinfectionofNicotianabenthamianacomparedwithArabidopsisand,consequently,theδBcara1mutantsshowedthewild-typelevelofvirulenceonN.benthamianaleaves.TheseresultssupporttheconclusionthattheexpressionofBcara1ishostdependentandisakeydeterminantofthediseaseoutcome.
Twoxylose-tolerantGH43bifunctionalβ-xylosidase/α-arabinosidasesandoneGH11xylanasefromHumicolainsolensandtheirsynergyinthedegradationofxylan.
Yang,X.,Shi,P.,Huang,H.,Luo,H.,Wang,Y.,Zhang,W.&Yao,B.(2014).FoodChemistry,148(1),381-387.
LinktoArticle
ReadAbstract
Twoβ-xylosidasesoffamily43(Xyl43AandXyl43B)andonexylanaseoffamily11(Xyn11A)wereidentifiedfromthegenomesequenceofHumicolainsolensY1,andtheirgeneproductsweresuccessfullyexpressedinheterologoushosts.TheoptimalactivitiesofthepurifiedXyl43A,Xyl43B,andXyn11AwerefoundatpH6.5–7.0and50–60°C.TheywerestableoverapHrangeof5.0–10.0andtemperaturesof50°Candbelow.Xyl43AandXyl43Bhadtheactivitiesofβ-xylosidase,α-arabinosidaseandxylanase,andshowedxylosetoleranceupto79and292mM,respectively.Xyn11AandXyl43AorXyl43Bshowedsignificantsynergisticeffectsonthedegradationofvariousxylans,releasingmorereducedsugars(upto1.29folds)bysimultaneousorsequentialaddition.Thisstudyprovidesseveralenzymesforsynergisticdegradationofxylanandcontributestotheformulationofoptimisedenzymemixturesfortheefficienthydrolysisofplantbiomass.
Large-scaleextractionofrhamnogalacturonanIfromindustrialpotatowaste.
Byg,I.,Diaz,J.,Øgendal,L.H.,Harholt,J.,Jørgensen,B.,Rolin,C.,Rolin,C.,Svava,R.&Ulvskov,P.(2012).FoodChemistry,131(4),1207-1216.
LinktoArticle
ReadAbstract
Potatopulpisrichindietaryfibresandisanunderutilisedmaterialproducedinlargequantitiesbythepotatostarchfactories.PotatofibresareespeciallyrichinrhamnogalacturonanI(RGI).RGIisapecticpolysaccharidewithahighdegreeofbranchinganduntilnowundegradedRGIhasonlybeenextractedinsmallamountslimitingtheapplicationpossibilitiesforRGI.Thepresentpaperdescribesalarge-scaleextractionprocessprovidinglargequantitiesofundegradedRGIreadilyavailable.TheextractionprocessincludesenzymaticstarchremovalusingpurifiedTermamyl,enzymaticRGIsolubilisationusingahighlypurifiedpolygalacturonase,andfinallypurificationusingdepthfiltrationandultrafiltration.TheextractedRGIhasahighmolecularweightandamonosaccharidecompositioncomparabletoRGIextractedbyanalyticalextractionprocedures.ThelargeamountofRGIavailablebythepresentedmethodallowsforthoroughstructure–functionanalysesandtailoringofRGItospecificfunctionalities.
StructuralandfunctionalcharacterizationofanovelfamilyGH1154-O-methyl-α-glucuronidasewithspecificityfordecoratedarabinogalactans.
Aalbers,F.,Turkenburg,J.P.,Davies,G.J.,Dijkhuizen,L.&vanBueren,A.L.(2015).JournalofMolecularBiology,427(24),3935-3946.
LinktoArticle
ReadAbstract
Glycosidehydrolasesareclusteredintofamiliesbasedonaminoacidsequencesimilarities,andbelongingtoaparticularfamilycaninferbiologicalactivityofanenzyme.FamilyGH115containsα-glucuronidaseswhereseveralmembershavebeenshowntohydrolyzeterminalα-1,2-linkedglucuronicacidand4-O-methylatedglucuronicacidfromtheplantcellwallpolysaccharideglucuronoxylan.OtherGH115enzymesshownoactivityonglucuronoxylan,andtherefore,ithasbeenproposedthatfamilyGH115maybeapoly-specificfamily.Inthisstudy,werevealthataputativeperiplasmicGH115fromthehumangutsymbiontBacteroidesthetaiotaomicron,BtGH115A,hydrolyzesterminal4-O-methyl-glucuronicacidresiduesfromdecoratedarabinogalactanisolatedfromacaciatree.Thethree-dimensionalstructureofBtGH115ArevealsthatBtGH115Ahasthesamedomainarchitectureastheotherstructurallycharacterizedmemberofthisfamily,BoAgu115A;howeverthepositionoftheC-terminalmoduleisalteredwithrespecttoeachindividualenzyme.PhylogeneticanalysisofGH115aminosequencesdividesthefamilyintodistinctcladesthatmaydistinguishdifferentsubstratespecificities.Finally,weshowthatBtGH115Aα-glucuronidaseactivityisnecessaryforthesequentialdigestionofbranchedgalactansfromacaciagumbyagalactan-β-1,3-galactosidasefromfamilyGH43;however,whileB. thetaiotaomicrongrowsonlarchwoodarabinogalactan,thebacteriumisnotabletometabolizeacaciagumarabinogalactan,suggestingthatBtGH115Aisinvolvedindegradationofarabinogalactanfragmentsliberatedbyothermicrobialspeciesinthegastrointestinaltract.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们