Megazyme/AZCL HE纤维素/I-AZCEL/3克
商品编号:
I-AZCEL
品牌:
Megazyme INC
市场价:
¥3504.00
美元价:
2102.40
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCL-HE-Celluloseforidentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Substratefortheassayofendo-cellulase.
Newchromogenicsubstratesfortheassayofalpha-amylaseand(1→4)-β-D-glucanase.
McCleary,B.V.(1980).CarbohydrateResearch,86(1),97-104.
LinktoArticle
ReadAbstract
Newchromogenicsubstrateshavebeendevelopedforthequantitativeassayofalpha-amylaseand(1→4)-β-D-glucanase.Thesewerepreparedbychemicallymodifyingamyloseorcellulosebeforedyeing,toincreasesolubility.Afterdyeing,thesubstrateswereeithersolubleorcouldbereADIlydispersedtoformfine,gelatinoussUSPensions.Assaysbasedontheuseofthesesubstratesaresensitiveandhighlyspecificforeitheralpha-amylaseor(1→4)-β-D-glucanase.Themethodofpreparationcanalsobeappliedtoobtainsubstratesforotherendo-hydrolases.
CharacterizationoftheErwiniachrysanthemiganlocus,involvedinGalactancatabolism.
Delangle,A.,Prouvost,A.F.,Cogez,V.,Bohin,J.P.,Lacroix,J.M.&Cotte-Pattat,N.H.(2007).JournalofBacteriology,189(19),7053-7061.
LinktoArticle
ReadAbstract
β-1,4-Galactanisamajorcomponentoftheramifiedregionsofpectin.AnalysisofthegenomeoftheplantpathogenicbacteriaErwiniachrysanthemirevealedthepresenceofaclusterofeightgenesencodingproteinspotentiallyinvolvedingalactanutilization.ThepredictedtransportsystemwouldcompriseaspecificporinGanLandanABCtransportermadeoffourproteins,GanFGK2.Degradationofgalactanswouldbecatalyzedbytheperiplasmic1,4-β-endogalactanaseGanA,whichreleasedoligogalactansfromtrimertohexamer.Aftertheirtransportthroughtheinnermembrane,oligogalactanswouldbedegradedintogalactosebythecytoplasmic1,4-β-exogalactanaseGanB.Mutantsaffectedfortheporinorendogalactanasewereunabletogrowongalactans,buttheygrewongalactoseandonamixtureofgalactotriose,galactotetraose,galactopentaose,andgalactohexaose.Mutantsaffectedfortheperiplasmicgalactanbindingprotein,thetransporterATPase,ortheexogalactanasewereonlyabletogrowongalactose.Thus,thephenotypesofthesemutantsconfirmedthefunctionalityoftheganlocusintransportandcatabolismofgalactans.ThesemutationsdidnotaffectthevirulenceofE.chrysanthemionchicoryleaves,potatotubers,orSaintpauliaionantha,suggestinganaccessoryroleofgalactanutilizationinthebacterialpathogeny.
EffectofpH,temperatureanddietondigestiveenzymeprofilesinthemudcrab,Scyllaserrata.
Pavasovic,M.,Richardson,N.A.,Anderson,A.J.,Mann,D.&Mather,P.B.(2004).Aquaculture,242(1),641-654.
LinktoArticle
ReadAbstract
CommercialfarmingofthemudcrabScyllaserrataisasignificantindustrythroughoutSouthEastAsia.Thelimitedscientificknowledgeofmudcrabnutritionalrequirementsanddigestiveprocesses,however,isrecognisedasamajorconstrainttothefuturegrowthofthisindustry.Tobetterunderstandthemechanismsofdigestioninthemudcrabwehaveanalysedthediversityofdigestiveenzymesfromthemidgut(MG)gland.Significantprotease,amylase,cellulaseandxylanaseactivitiesweredetectedinsolubleextractsfromthisorgan.Temperatureprofilesforallenzymeswerebasicallysimilarwithoptimalactivitiesobservedat50°C.ExaminationofpHtolerancesrevealedoptimalactivitiesforproteaseandamylaseatpH7whilemaximumcellulaseandxylanaseactivitieswereobservedatpH5.5.Underoptimumconditions,proteaseandamylaseactivitieswereapproximatelytwoordersofmagnitudegreaterthanthoseseenforeithercellulaseorxylanase.Interestingly,MGextractswereabletoliberateglucosefromeitherstarchorcarboxymethyl(CM)-cellulosesuggestingthatarangeofcarbohydratesmaybeutilisedasenergysources.Theeffectsofdietarycarbohydratesonfeeddigestibility,digestiveenzymelevelsandgrowthwerealsostudiedbyinclusionofadditionalstarchorCM-celluloseattheexpenseofcaseininformulateddiets.Itwasshownthatamylase,cellulaseandxylanaseactivitiesinextractsfromthemidgutglandwerehighestinmudcrabsfeddietscontaining47%carbohydrate.Basedonthesefindings,wesuggestthattheABIlityofthemudcrabtomodulatedigestiveenzymeactivitiesmayrepresentamechanismtomaximiseaccesstoessentialnutrientswhenthedietaryprofilechanges.
Towardsamolecularunderstandingofsymbiontfunction:identificationofafungalgeneforthedegradationofxylaninthefungusgardensofleaf-cuttingants.
Schiøtt,M.,Licht,H.H.D.F.,Lange,L.&Boomsma,J.J.(2008).BMCMicrobiology,8(1),40.
LinktoArticle
ReadAbstract
Background:Leaf-cuttingantsliveinsymbiosiswithafungusthattheyrearforfoodbyprovidingitwithliveplantmaterial.Untilrecentlythefungus"maininferredfunctionwastomakeotherwiseinaccessIBLecellwalldegradationproductsavailabletotheants,butnewstudieshavesheddoubtonthisidea.Toprovideevidenceforthecellwalldegradingcapacityoftheattineantsymbiont,wedesignedPCRprimersfromconservedregionsofknownxylanasegenes,tobeusedinPCRwithgenomicDNAfromthesymbiontastemplate.Wealsomeasuredxylanase,cellulaseandproteinaseactivitiesinthefungusgardensinordertoinvestigatethedynamicsofdegradationactivities.Results:WeclonedaxylanasegenefromthemutualisticfungusofAcromyrmexechinatior,determineditsproteinsequence,andinserteditinayeastexpressionvectortoconfirmitssubstratespecificity.Ourresultsshowthatthefungushasafunctionalxylanasegene.Wealsoshowbylabexperimentsinvivothattheactivityoffungalxylanaseandcellulaseisnotevenlydistributed,butconcentratedinthelowerlayeroffungusgardens,withonlymodestactivityinthemiddlelayerwheregongylidiaareproducedandintermediateactivityinthenewlyestablishedtoplayer.Thisverticaldistributionappearstobenegativelycorrelatedwiththeconcentrationofglucose,whichindicatesadirectlyregulatingroleofglucose,ashasbeenfoundinotherfungiandhasbeenpreviouslysuggestedfortheantfungalsymbiont.Conclusion:ThemutualisticfungusofAcromyrmexechinatiorhasafunctionalxylanasegeneandisthuspresumablyabletoatleastpartiallydegradethecellwallsofleaves.Thisfindingsupportsasaprotrophicoriginofthefungalsymbiont.Theobserveddistributionofenzymeactivityleadsustoproposethatleaf-substratedegradationinfungusgardensisamulti-stepprocesscomparabletonormalbiodegradationoforganicmatterinsoilecosystems,butwiththecrucialdifferencethatasinglefungalsymbiontrealizesmostofthestepsthatarenormallyprovidedbyaseriesofmicroorganismsthatcolonizefallenleavesinadistinctsuccession.
Influenceofdietaryproteinondigestiveenzymeactivity,growthandtailmusclecompositioninredclawcrayfish,Cheraxquadricarinatus(vonMartens).
Pavasovic,A.,Anderson,A.J.,Mather,P.B.&Richardson,N.A.(2007).AquacultureResearch,38(6),644-652.
LinktoArticle
ReadAbstract
Thisstudywasconductedtoevaluatetheeffectsofdietaryproteinondigestiveenzymeprofiles,growthandtailmusclecompositioninthefreshwaterredclawcrayfish,Cheraxquadricarinatus.Crayfishwerefedfivedietsthatconsistedofacommercialcrayfishpelletandexperimentaldietscontaining13%,18%,25%or32%crudeprotein(CP),foraperiodof12weeks.Analysisofdigestiveenzymeprofilesfromthemidgutgland(MG)revealedapositivecorrelationbetweenprotease,amylaseandcellulaseactivitiesanddietaryproteinlevel.Foralltreatments,carbohydraseactivitylevels(cellulaseandamylase)weresignificantlyhigherthanthosedetectedforprotease.Asdietaryproteinwaselevated,therewasageneralincreaseinspecificgrowthrate(SGR),withthehighestSGR(0.58±0.06)valuesobservedincrayfishfedthedietcontaining25%CP.Feedconversionratio(FCR)rangedbetween5.84and6.97anddidnotdiffersignificantlyamongthetreatmentgroupsincludingthereferencediet,withtheexceptionofthelow-proteindiet(13%CP)whichshowedanFCRof9.31.Finally,regressionanalysisrevealedastrongpositivecorrelationbetweenthelevelofdietaryproteinandCPcontentinthetailmuscle(P=0.004;r2)=0.99).
AnovelantifungalPseudomonasfluorescensisolatedfrompotatosoilsinGreenland.
Michelsen,C.F.&Stougaard,P.(2011).CurrentMicrobiology,62(4),1185-1192.
LinktoArticle
ReadAbstract
ArhizobacteriumwithhighantifungalactivitywasisolatedfromapotatofieldatInneruulalik,SouthGreenland.PhylogeneticanalysisbasedonmultilocussequencetypingshowedthatthebacteriumwasaffiliatedwithstrainsofPseudomonasfluorescens.Thebacterium,denotedasPseudomonasfluorescensIn5,inhibitedinvitroabroadrangeofphytopathogenicfungi,andtheantifungalactivityincreasedwithdecreasingtemperature.MicrocosmexperimentsdemonstratedthatP.fluorescensIn5protectedtomatoseedlingsfromRhizoctoniasolani.TransposonmutagenesisshowedthatthemajorcausefortheantifungalactivityofP.fluorescensIn5wasanovelnon-ribosomalpeptidesynthase(NRPS)gene.Inaddition,transposonmutagenesisshowedthatP.fluorescensIn5alsocontainedaputativequinoproteinglucosedehydrogenasegene,whichwasinvolvedingrowthinhibitionofphytopathogenicfungi.AlthoughP.fluorescensIn5containedthecapacitytosynthesizehydrogencyanide,β-1,3-glucanase,protease,andchitinase,thesedidnotseemtoplayaroleintheinvitroandmicrocosmantifungalassays.
Characterizationofanewoxidant-stableserineproteaseisolatedbyfunctionalmetagenomics.
Biver,S.,Portetelle,D.&Vandenbol,M.(2013).SpringerPlus,2(1),410.
LinktoArticle
ReadAbstract
Anovelserineproteasegene,SBcas3.3,wasidentifiedbyfunctionalscreeningofaforest-soilmetagenomiclibraryonagarplatessupplementedwithAZCL-casein.OverproductioninEscherichiacolirevealedthattheenzymeisproducedasa770-amino-acidprecursorwhichisprocessedtoamatureproteaseof~55kDa.Thelatterwaspurifiedbyaffinitychromatographyforcharacterizationwiththeazocaseinsubstrate.TheenzymeprovedtobeanalkalineproteaseshowingmaximalactivitybetweenpH9and10andat50°C.Treatmentwiththechelatingagentethylenediaminetetraaceticacidirreversiblydenaturedtheprotease,whosestabilitywasfoundtodependstrictlyoncalciumions.Theenzymeappearedrelativelyresistanttodenaturingandreducingagents,anditsactivitywasenhancedinthepresenceof10ml/lnonionicdetergent(Tween20,Tween80,orTritonX-100).Moreover,SBcas3.3displayedoxidantstability,afeatureparticularlysoughtinthedetergentandbleachingindustries.SBcas3.3wasactivatedbyhydrogenperoxideatconcentrationsupto10g/landitstillretained30%ofactivityin50g/lH2O2.
Cloningandrelationalanalysisof15novelfungalendoglucanasesfromfamily12glycosylhydrolase.
Goedegebuur,F.,Fowler,T.,Phillips,J.,vanderKley,P.,vanSolingen,P.,Dankmeyer,L.&Power,S.D.(2002).CurrentGenetics,41(2),89-98.
LinktoArticle
ReadAbstract
Cellulasesbelongtothelargefamilyofglycosylhydrolases(GHs)andareproducedbyavarietyofbacteriaandfungi.Theseextracellularenzymesactasendoglucanases(EGs),cellobiohydrolasesorβ-glucosidases.Inthispaper,wedescribemolecularscreeningforEGsfromtheGHfamily12.Usingthreehomologoussequenceboxesdeducedfromfivepreviouslyknownmembersofthefamily,weanalysed22cellulase-producingfungalstrainsobtainedfromadiverseareaofthefungalkingdom.Polymerasechainreactionsusingdegenerateprimersdesignedtothehomologousproteinboxeswereusedtoidentifythefamily12homologues.Severalfungishowedthepresenceofmultipleversionsofthegene,whileaminoacidsequenceanalysisshoweddiversityin15novelmembersofthefamily,rangingfrom26%to96%similarity.Oursequenceanalysisshowsthatthephylogenetictreeoffamily12EGscanbedividedintofoursubfamilies:12-1(fungalgroupI),12-2(fungalgroupII),12-3(StreptomycesgroupinwhichRhodothermusmarinusfits)and12-4(Thermophilesgroup).Erwiniacarotovoramayformanewsubgroup.
Digestiveenzymespectraincrustaceandecapods(Paleomonidae,PortunidaeandPenaeidae)feedinginthenaturalhabitat.
Figueiredo,M.S.R.B.&Anderson,A.J.(2009).AquacultureResearch,40(3),282-291.
LinktoArticle
ReadAbstract
ThisworkdescribestheprofileoffiveproteasesandfourcarbohydrasesfromthecrustaceandecapodsMacrobrachiumaustraliense(Holthuis),Scyllaserrata(Forskal),Portunuspelagicus(Linnaeus),Penaeusesculentus,Penaeusplebejus(Hess)andMetapenaeusbennettae(Racck&Dall),feedinginthenaturalhabitat,inordertoprovideanindicationoftheirdigestivecapabilities.Theresultsraisedthefollowingpoints.First,speciesfromeachfamilyshowedaparticularsuiteofdigestiveenzymes.Second,theactivityofcellulasefromM.australiensisandS.serrata,usingAZCL-HEcelluloseasthesubstrate,wasaround90%higherthanthatobservedwithAZO-CMcellulose.However,forP.pelagicusandP.esculentus,theenzymeactivitywasbetterwithAZO-CMcellulose.Third,M.australiensedisplayedthehighestratioofamylasetoproteaseactivity.Incontrast,Portunidaespecies,P.pelagicusandS.serratashowedthelowestratios.Fourth,comparisonofthelaminarinaseactivityofM.bennettaeandP.esculentusinOctober(Spring)andDecember(earlySummer)showedasignificantdecreaseinDecember.Finally,thewidedistributionofdigestiveenzymesinthesecrustaceansmayreflectdifferentfeedinghabitsandhabitats.
Rationallyselectedsingle‐sitemutantsoftheThermoascusaurantiacusendoglucanaseincreasehydrolyticactivityoncellulosicsubstrates.
Srikrishnan,S.,Randall,A.,Baldi,P.&DaSilva,N.A.(2012).BiotechnologyandBioengineering,109(6),1595-1599.
LinktoArticle
ReadAbstract
VariantsoftheThermoascusaurantiacusEg1enzymewithhighercatalyticefficiencythanwild-typewereobtainedviasite-directedmutagenesis.Usingarationalmutagenesisapproachbasedonstructuralbioinformaticsandevolutionaryanalysis,twopositions(F16SandY95F)wereidentifiedasprioritysitesformutagenesis.ThemutantandparentenzymeswereexpressedandsecretedfromPichiapastorisandthesinglesitemutantsF16SandY95Fshowed1.7-and4.0-foldincreasesinKcatand1.5-and2.5-foldimprovementsinhydrolyticactivityoncellulosicsubstrates,respectively,whilemaintainingthermostability.Similartotheparentenzyme,thetwovariantswereactivebetweenpH4.0and8.0andshowedoptimalactivityattemperature70°CatpH5.0.Thepurifiedenzymeswereactiveat50°Cforover12 handretainedatleast80%ofinitialactivityfor2 hat70°C.Incontrasttotheimprovedhydrolysisseenwiththesinglemutationenzymes,noimprovementwasobservedwithathirdvariantcarryingacombinationofbothmutations,whichinsteadshoweda60%reductionincatalyticefficiency.Thisworkfurtherdemonstratesthatnon-catalyticaminoacidresiduescanbeengineeredtoenhancecatalyticefficiencyinpretreatmentenzymesofinterest.
Acomparativestudyofcellulaseandxylanaseactivityinfreshwatercrayfishandmarineprawns.
Crawford,A.C.,Richardson,N.R.&Mather,P.B.(2005).AquacultureResearch,36(6),586-592.
LinktoArticle
ReadAbstract
Cellulaseandxylanasedigestiveenzymeactivitieswerecomparedinfourfreshwatercrayfish(GenusCherax)andthreemarineprawn(GenusPenaeus)species.TemperatureandpHprofilesforcellulase(endoglucanase)werefoundtobeverysimilarinallspecies,withmaximumactivityoccurringat60°CandpH5.0.TemperatureandpHprofilesforxylanase(endoxylanase)werealsoverysimilarinallcrayfishspecies,withmaximumactivityoccurringat50°CandpH5.0.Xylanaseactivitywasnotdetectedinthethreeprawnspeciesexamined.Inaddition,invitrostudiesshowedthatmostspecieswereabletoliberateglucosefromcarboxymethylcellulose,indicatingthatcellulosesubstratescanbeasourceofenergyforbothcrayfishandprawnspecies.
Exo‐exosynergybetweenCel6AandCel7AfromHypocreajecorina:Roleofcarbohydratebindingmoduleandtheendo‐lyticcharacteroftheenzymes.
Badino,S.F.,Christensen,S.J.,Kari,J.,Windahl,M.S.,Hvidt,S.,Borch,K.&Westh,P.(2017).BiotechnologyandBioengineering,9999:1–9.
LinktoArticle
ReadAbstract
Synergybetweencellulolyticenzymesisessentialinbothnaturalandindustrialbreakdownofbiomass.Inadditiontosynergybetweenendo-andexo-lyticenzymes,alesserknownbutequallyconspicuoussynergyoccursamongexo-acting,processivecellobiohydrolases(CBHs)suchasCel7AandCel6AfromHypocreajecorina.Westudiedthissystemusingmicrocrystallinecelluloseassubstrateandfoundadegreeofsynergybetween1.3and2.2dependingontheexperimentalconditions.Synergybetweenenzymevariantswithoutthecarbohydratebindingmodule(CBM)anditslinkerwasstronglyreducedcomparedtothewildtypes.Oneplausibleinterpretationofthisisthatexo-exosynergydependsonthetargetingroleoftheCBM.Manyearlierworkshaveproposedthatexo-exosynergywascausedbyanauxiliaryendo-lyticactivityofCel6A.However,biochemicaldatafromdifferentassayssuggestedthattheendo-lyticactivityofbothCel6AandCel7Awere103–104timeslowerthanthecommonendoglucanase,Cel7B,fromthesameorganism.Moreover,theendo-lyticactivityofCel7Awas2–3-foldhigherthanforCel6A,andwesuggestthatendo-likeactivityofCel6Acannotbethemaincausefortheobservedsynergy.Rather,wesuggesttheexo-exosynergyfoundheredependsondifferentspecificitiesoftheenzymespossiblygovernedbytheirCBMs.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们