Megazyme/AZCL-Barley β-Glucan/I-AZBGL/3 grams
商品编号:
I-AZBGL
品牌:
Megazyme INC
市场价:
¥3864.00
美元价:
2318.40
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCL-Barleyβ-Glucanforidentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Substratefortheassayofmaltβ-glucanase,lichenaseandcellulases.
Newchromogenicsubstratesfortheassayofalpha-amylaseand(1→4)-β-D-glucanase.
McCleary,B.V.(1980).CarbohydrateResearch,86(1),97-104.
LinktoArticle
ReadAbstract
Newchromogenicsubstrateshavebeendevelopedforthequantitativeassayofalpha-amylaseand(1→4)-β-D-glucanase.Thesewerepreparedbychemicallymodifyingamyloseorcellulosebeforedyeing,toincreasesolubility.Afterdyeing,thesubstrateswereeithersolubleorcouldbereADIlydispersedtoformfine,gelatinoussUSPensions.Assaysbasedontheuseofthesesubstratesaresensitiveandhighlyspecificforeitheralpha-amylaseor(1→4)-β-D-glucanase.Themethodofpreparationcanalsobeappliedtoobtainsubstratesforotherendo-hydrolases.
Measurementofmaltbeta-glucanase.
McCleary,B.V.(1986).Proceedingsofthe19thConventionoftheInstituteofBrewing(Aust.andN.Z.section),181-187.
LinktoArticle
ReadAbstract
AProcedurehasbeendevelopedfortheassayofmaltβ-glucanase[a(1→3)(1→4)-β-D-glucanase]whichemploysassubstrate,barleyβ-glucandyedwithRemazolbrilliantBlueandchemicallymodifiedwithcarboxymethylgroupstoincreasesolubility.Thedescribedassayproceduretogetherwithamodifiedextractionformatallowsanalysisofuptotenmaltsamplesinlessthan80min.Also,theprocedureisspecificforenzymesactiveonbarleyβ-glucan,isaccurateandreliable,andcanbereadilyappliedtotheanalysisofβ-glucanaseinmalt,greenmaltandwort.
Asolublechromogenicsubstratefortheassayof(1→3)(1→4)-β-D-glucanase(lichenase).
McCleary,B.V.(1986).CarbohydratePolymers,6(4),307-318.
LinktoArticle
ReadAbstract
Asimpleprocedurefortheassayof(1→3)(1→4)-β-D-glucanase(lichenase)hasbeendeveloped.Thisassayemploysassubstratebarley(1→3)(1→4)-β-D-glucandyedwithRemazolbrilliantBlueRandchemicallymodifiedwithcarboxymethylgroupstoincreasesolubility.Preparationofthissubstraterequiredthedevelopmentofanimprovedprocedurefortheextractionandpurificationofbarleyβ-glucan.AssaysbasedontheuseofthedescribedchromogenicsubstrateatpH6•5aresensitiveandspecificforenzymesactiveonbarleyβ-glucan.
Problemscausedbybarleybeta-glucansinthebrewingindustry.
McCleary,B.V.(1986).ChemistryinAustralia,53,306-308.
LinktoArticle
ReadAbstract
Brewing,theoldestapplicationofbio-technologyisnowamixoftradeartandmodernscience.Thisarticledescribesnewapplicationsofenzymechemistrytotrouble-shootinginbeerproduction.
Assayofmaltβ-glucanaseusingazo-barleyglucan:animprovedprecipitant.
McCleary,B.V.&Shameer,I.(1987).JournaloftheInstituteofBrewing,93(2),87-90.
LinktoArticle
ReadAbstract
Aprocedurerecentlydescribedfortheassayofmaltβ-glucanase,whichemploysadye-labelledandchemically-modifiedbarleyβ-glucansubstrate,hasbeenimprovedbychangingtheprecipitantsolutionusedtoterminatethereaction.Thenewprecipitantsolutioncontains0•4%(w/v)zincacetateand4%(w/v)sodiumacetatedissolvedin80%(v/v)aqueousmethylcellosolve.Withthisprecipitanttheprocedurecanbedirectlyappliedtotheassayofcellulaseactivity,andwithminormodification,totheassayoflichenaseactivity.
ActivityofarABInoxylanhydrolyzingenzymesduringmashingwithbarleymaltorbarleymaltandunmaltedwheat.
Debyser,W.,Delvaux,F.&Delcour,J.A.(1998).JournalofAgriculturalandFoodChemistry,46(12),4836-4841.
LinktoArticle
ReadAbstract
Pilotscalebrewswerepreparedeitherwith100%barleymalt(BM100)or60%barleymaltand40%unmaltedwheat(BM60W40).Arabinoxylanandβ-glucanhydrolyzingenzymeactivitiesweredeterminedduringmashingusingtwotemperatureprofiles.ThemeasuredenzymicactivitiesincreasedfortheBM100andBM60W40mashesintheearlystagesofmashing.Theendoxylanaseandα-L-arabinofuranosidaseactivitiesremainedconstantat50°Cbutrapidlydecreasedabove50°C.At72°C,theendoxylanaseandα-L-arabinofuranosidaseactivitieswerealmostcompletelylost.Theβ-D-xylosidaseactivityonlydecreasedslowlyat63°C.Theβ-glucanaseactivitydecreasedrapidlyat50°Candwascompletelylostafter15minat50°C.Fromthexylose(Xyl)levels(ameasureforarabinoxylancontent)intheBM100worts(1.28−1.33g/L),asolubilizationof0.23−0.26%Xyl(%ofcerealdrymatter)duringmashingwascalculated.TheXyllevelsintheBM60W40worts(0.92−1.11g/L)correspondedwithasolubilizationof0.12to0.15%Xylduringmashing.
Purification,characterizationandstructuralanalysisofanabundantβ-1,3‐glucanasefrombananafruit.
Peumans,W.J.,Barre,A.,Derycke,V.,Rougé,P.,Zhang,W.,May,G.D.,Delcour,J.A.,VanLeuven,F.&VanDamme,E.J.(2000).EuropeanJournalofBiochemistry,267(4),1188-1195.
LinktoArticle
ReadAbstract
Anabundant,catalyticallyactiveβ-1,3-endoglucanase(EC3.2.1.39)hasbeenisolatedfromthepulpripeofbananas.Biochemicalanalysisofthepurifiedprotein,molecularmodelling,andmolecularcloningofthecorrespondinggeneindicatethatthisbananaenzymecloselyresemblespreviouslycharacterizedplantβ-glucanaseswithrespecttoitsamino-acidsequence,structureandbiologicalactivity.Theresultsdescribedinthispaperdemonstrateboththeoccurrenceofanabundantactiveβ-1,3-endoglucanasesinfruitsandalsoreaddressthequestionofthepossIBLeinvolvementoftheseenzymesintheripeningand/orsofteningprocess.
Tenacibaculumskagerrakensesp.nov.,amarinebacteriumisolatedfromthepelagiczoneinSkagerrak,Denmark.
Frette,L.,Jørgensen,N.O.G.,Irming,H.&Kroer,N.(2004).InternationalJournalofSystematicandEvolutionaryMicrobiology,54(2),519-524.
LinktoArticle
ReadAbstract
AnumberofbacteriawereisolatedfromseawaterinSkagerrak,Denmark,at30mdepth.Twooftheisolates,strainsD28andD30T,belongedtotheFlavobacteriaceaewithintheCytophaga–Flavobacterium–Bacteroidesgroup.Sequencingof16SrRNAgenesofthetwostrainsindicatedstronglythattheybelongedtothegenusTenacibaculumandthattheyshowedgreatestsimilaritytothespeciesTenacibaculumamylolyticumandTenacibaculummesophilum.DNA–DNAhybridizationvalues,DNAbasecompositionandphenotypiccharacteristicsseparatedtheSkagerrakstrainsfromtheotherspecieswithinTenacibaculum.Thus,itisconcludedthatthestrainsbelongtoanovelspecieswithinthegenusTenacibaculum,forwhichthenameTenacibaculumskagerrakensesp.nov.isproposed,withstrainD30T(=ATCCBAA-458T=DSM14836T)asthetypestrain.
Evaluationofcellulolyticandhemicellulolyticabilitiesoffungiisolatedfromcoffeeresidueandsawdustcomposts.
Eida,M.F.,Nagaoka,T.,Wasaki,J.&Kouno,K.(2011).MicrobesEnviron,26(3),220-227.
LinktoArticle
ReadAbstract
Thisstudyfocusedontheevaluationofcellulolyticandhemicellulolyticfungiisolatedfromsawdustcompost(SDC)andcoffeeresiduecompost(CRC).Toidentifyfungalisolates,theITSregionoffungalrRNAwasamplifiedandsequenced.Toevaluateenzymeproduction,isolateswereinoculatedontowheatbranagarplates,andenzymeswereextractedandtestedforcellulase,xylanase,β-glucanase,mannanase,andproteaseactivitiesusingdifferentazurinecross-linked(AZCL)substrates.Intotal,18isolatesfromSDCand29isolatesfromCRCwereidentifiedandevaluated.Fourgenera(Aspergillus,Galactomyces,Mucor,andPenicillium)andfivegenera(Aspergillus,Coniochaeta,Fusarium,Penicillium,andTrichoderma/Hypocrea)weredominantinSDCandCRC,respectively.Penicilliumsp.,Trichodermasp.,andAspergillussp.displayedhighcellulolyticandhemicellulolyticactivities,whileMucorisolatesexhibitedthehighestβ-glucanaseandmannanaseactivities.TheenzymeanalysesrevealedthatPenicillium,Aspergillus,andMucorisolatessignificantlycontributedtothedegradationofSDC,whereasPenicillium,Aspergillus,andTrichodermaisolateshadadominantroleinthedegradationofCRC.Notably,isolatesSDCF5(P.crustosum),CRCF6(P.verruculosum),andCRCF2andCRCF16(T.harzianum/H.lixii)displayedhighactivityregardingcelluloseandhemicellulosedegradation,whichindicatesthatthesespeciescouldbebeneficialfortheimprovementofbiodegradationprocessesinvolvinglignocellulosicmaterials.
Patternsoffunctionalenzymeactivityinfungusfarmingambrosiabeetles.
Licht,H.H.D.F.&Biedermann,P.H.W.(2012).FrontiersinZoology,9(1),13.
LinktoArticle
ReadAbstract
Introduction:Inwood-dwellingfungus-farmingweevils,theso-calledambrosiabeetles(Curculionidae:ScolytinaeandPlatypodinae),woodintheexcavatedtunnelsisusedasamediumforcultivatingfungibythecombinedactionofdigginglarvae(whichcreatemorespaceforthefungitogrow)andofadultssowingandpruningthefungus.Thebeetlesareobligatelydependentonthefungusthatprovidesessentialvitamins,aminoacidsandsterols.However,towhatextentmicrobialenzymessupportfungusfarminginambrosiabeetlesisunknown.Herewemeasure(i)13plantcell-walldegradingenzymesinthefungusgardenmicrobialconsortiumoftheambrosiabeetleXyleborinussaxesenii,includingitsprimaryfungalsymbionts,inthreecompartmentsoflaboratorymaintainednests,atdifferenttimepointsaftergalleryfoundationand(ii)fourspecificenzymesthatmaybeeitherinsectormicrobiallyderivedinX.saxeseniiadultandlarvalindividuals.Results:Wediscoveredthattheactivityofcellulasesinambrosiafungusgardensisrelativelysmallcomparedtotheactivitiesofothercellulolyticenzymes.Enzymeactivityinallcompartmentsofthegardenwasmainlydirectedtowardshemicellulosecarbohydratessuchasxylan,glucomannanandcallose.Hemicellulolyticenzymeactivitywithinthebroodchamberincreasedwithgalleryage,whereasirrespectiveoftheageofthegallery,thehighestoverallenzymeactivityweredetectedinthegallerydumpmaterialexpelledbythebeetles.Interestinglyendo-β-1,3(4)-glucanaseactivitycapableofcallosedegradationwasidentifiedinwhole-bodyextractsofbothlarvaeandadultX.saxesenii,whereasendo-β-1,4-xylanaseactivitywasexclusivelydetectedinlarvae.Conclusion:Similartocloselyrelatedfungiassociatedwithbarkbeetlesinphloem,themicrobialsymbiontsofambrosiabeetleshardlydegradecellulose.Instead,theirenzymeactivityisdirectedmainlytowardscomparativelymoreeasilyaccessiblehemicellulosecomponentsoftheray-parenchymacellsinthewoodxylem.FurThermore,thedetectionofxylanolyticenzymesexclusivelyinlarvae(whichfeedonfunguscolonizedwood)andnotinadults(whichfeedonlyinfungi)indicatesthatonlylarvae(pre-)digestplantcellwallstructures.ThisimpliesthatinX.saxeseniiandlikelyalsoinmanyotherambrosiabeetles,adultsandlarvaedonotcompeteforthesamefoodwithintheirnests-incontrast,larvaeincreasecolonyfitnessbyfacilitatingenzymaticwooddegradationandfunguscultivation.
Evolutionarytransitionsinenzymeactivityofantfungusgardens.
DeFineLicht,H.H.,Schiøtt,M.,Mueller,U.G.&Boomsma,J.J.(2010).Evolution,64(7),2055-2069.
LinktoArticle
ReadAbstract
Fungus-growing(attine)antsandtheirfungalsymbiontspassedthroughseveralevolutionarytransitionsduringtheir50millionyearoldevolutionaryhistory.Thebasalattinelineagesoftenshiftedbetweentwomaincultivarclades,whereasthederivedhigher-attinelineagesmaintainedanassociationwithamonophyleticcladeofspecializedsymbionts.Inconjunctionwiththetransitiontospecializedsymbionts,theantsadvancedincolonysizeandsocialcomplexity.Hereweprovideacomparativestudyofthefunctionalspecializationinextracellularenzymeactivitiesinfungusgardensacrosstheattinephylogeny.Weshowthat,relativetosisterclades,gardensofhigher-attineantshaveenhancedactivityofprotein-digestingenzymes,whereasgardensofleaf-cuttingantsalsohaveincreasedactivityofstarch-digestingenzymes.However,theenzymeactivitiesoflower-attinefungusgardensaretargetedprimarilytowardpartialdegradationofplantcellwalls,reflectingaplesiomorphicstateofnondomesticatedfungi.Theenzymeprofilesofthehigher-attineandleaf-cuttinggardensappearparticularlysuitedtodigestfreshplantmaterialsandtoaccessnutrientsfromlivecellswithoutmajorbreakdownofcellwalls.Theadaptivesignificanceofthelower-attinesymbiontshiftsremainsunclear.Oneoftheseshiftswasobligate,butdigestiveadvantagesremainedambiguous,whereastheotherremainedfacultativedespiteprovidinggreaterdigestiveefficiency.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
Diversityofmicrobialcarbohydrate-activeenzymesinDanishanaerobicdigestersfedwithwastewatertreatmentsludge.
Wilkens,C.,Busk,P.K.,Pilgaard,B.,Zhang,W.J.,Nielsen,K.L.,Nielsen,P.H.&Lange,L.(2017).BiotechnologyforBiofuels,10(1),158.
LinktoArticle
ReadAbstract
Background:Improvedcarbohydrate-activeenzymes(CAZymes)areneededtofulfillthegoalofproducingfood,feed,fuel,chemicals,andmaterialsfrombiomass.Littleisknownabouthowthediversemicrobialcommunitiesinanaerobicdigesters(ADs)metabolizecarbohydratesorwhichCAZymesthatarepresent,makingtheADsauniquenichetolookforCAZymesthatcanpotentiatetheenzymeblendscurrentlyusedinindustry.Results:EnzymaticassaysshowedthatfunctionalCAZymesweresecretedintotheADenvironmentsinfourfull-scalemesophilicDanishADsfedwithprimaryandsurplussludgefrommunicipalwastewatertreatmentplants.MetagenomesfromtheADswereminedforCAZymeswithHomologytoPeptidePatterns(HotPep).19,335CAZymeswereidentifiedofwhich30%showed50%orloweridentitytoknownproteinsdemonstratingthatADsmakeupapromisingpoolfordiscoveryofnovelCAZymes.Afunctionwasassignedto54%ofallCAZymesidentifiedbyHotPep.Manydifferentα-glucan-actingCAZymeswereidentifiedinthefourmetagenomes,andthemostabundantfamilywasglycosidehydrolasefamily13,whichcontainsα-glucan-actingCAZymes.CellulyticandxylanolyticCAZymeswerealsoabundantinthefourmetagenomes.Thecellulyticenzymeswerelimitedalmosttoendoglucanasesandβ-glucosidases,whichreflectthelargeamountofpartlydegradedcelluloseinthesludge.NodockerindomainswereidentifiedsuggestingthatthecellulyticenzymesintheADsstudiedoperateindependently.OfxylanolyticCAZymes,especiallyxylanasesandβ-xylosidase,butalsoabatteryofaccessoryenzymes,werepresentinthefourADs.Conclusions:OurfindingssuggestthattheADsareagoodplacetolookfornovelplantbiomassdegradingandmodifyingenzymesthatcanpotentiatebiologicalprocessesandprovidebasisforproductionofarangeofadded-valueproductsfrombiorefineries.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们