Megazyme/AZCL Pachyman/I-AZPAC/3克
商品编号:
I-AZPAC
品牌:
Megazyme INC
市场价:
¥3288.00
美元价:
1972.80
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCL-Pachymanforidentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Substratefortheassayofendo-1,3-β-D-glucanase.
Developmentofβ-1,3‐glucanaseactivityingerminatedtomatoseeds.
Morohashi,Y.&Matsushima,H.(2000).JournalofExperimentalBotany,51(349),1381-1387.
LinktoArticle
ReadAbstract
Laminarin‐hydrolysingactivitydevelopedintheendospermoftomato(Lycopersiconesculentum)seedsfollowinggermination.Theenzymewasbasic(pI>10)andtheapparentmolecularmasswasestimatedtobe35 kDabySDS‐PAGE.Itwasspecificforlinearβ-1,3‐glucansubstrates.Laminarinwashydrolysedbytheenzymetoyieldamixtureofoligoglucosides,indicatingthattheenzymehadanendo‐actionpattern.Thus,theenzymewasidentifiedasβ-1,3‐endoglucanase(EC3.2.1.39).TheactivityoftheenzymedevelopedintheendospermafterrADIcleprotrusion(germination)hadoccurredandtheenzymeactivitywaslocalizedexclusivelyinthemicropylarregionoftheendospermwheretheradiclehadpenetrated.Whenthelateralendospermregion,wherenoinductionoftheenzymeoccurred,waswounded(cutorpunctured),therewasamarkedenhancementofβ-1,3‐glucanaseactivity.Thusthepost‐germinativeβ-1,3‐glucanaseactivityinthemicropylarendospermportionmightbebroughtaboutbywoundingresultingfromendospermrupturebyradiclepenetration.
Purification,characterizationandstructuralanalysisofanabundantβ-1,3‐glucanasefrombananafruit.
Peumans,W.J.,Barre,A.,Derycke,V.,Rougé,P.,Zhang,W.,May,G.D.,Delcour,J.A.,VanLeuven,F.&VanDamme,E.J.(2000).EuropeanJournalofBiochemistry,267(4),1188-1195.
LinktoArticle
ReadAbstract
Anabundant,catalyticallyactiveβ-1,3-endoglucanase(EC3.2.1.39)hasbeenisolatedfromthepulpofripebananas.Biochemicalanalysisofthepurifiedprotein,molecularmodelling,andmolecularcloningofthecorrespondinggeneindicatethatthisbananaenzymecloselyresemblespreviouslycharacterizedplantβ-glucanaseswithrespecttoitsamino-acidsequence,structureandbiologicalactivity.Theresultsdescribedinthispaperdemonstrateboththeoccurrenceofanabundantactiveβ-1,3-endoglucanasesinfruitsandalsoreaddressthequestionofthepossIBLeinvolvementoftheseenzymesintheripeningand/orsofteningprocess.
Lentinulaedodestlg1encodesathaumatin-likeproteinthatisinvolvedinlentinandegradationandfruitingbodysenescence.
Sakamoto,Y.,Watanabe,H.,Nagai,M.,Nakade,K.,Takahashi,M.&Sato,T.(2006).PlantPhysiology,141(2),793-801.
LinktoArticle
ReadAbstract
LentinanisanantitumorproductthatispurifiedfromfreshLentinulaedodesfruitingbodies.Itisacellwallcomponent,comprisingβ-1,3-glucanwithβ-1,6-linkedbranches,whichbecomesdegradedduringpostharvestpreservationasaresultofincreasedglucanaseactivity.Inthisstudy,weusedN-terminalaminoacidsequencetoisolatetlg1,ageneencodingathaumatin-like(TL)proteininL.edodes.TheCDNAclonewasapproximately1.0kbwhereasthegenomicsequencewas2.1kb,andcomparisonofthetwoindicatedthattlg1contains12introns.Thetlg1geneproduct(TLG1)waspredictedtocomprise240aminoacids,withamolecularmassof25kDandisoelectricpointvalueof3.5.Theputativeaminoacidsequenceexhibitsapproximately40%identitywithplantTLproteins,andafungalgenomedatabasesearchrevealedthattheseTLproteinsareconservedinmanyfungiincludingthebasidiomycotaandascomycota.Transcriptionoftlg1wasnotdetectedinvegetativemyceliumoryoungandfreshmushrooms.However,transcriptionincreasedfollowingharvest.Western-blotanalysisdemonstratedariseinTLG1levelsfollowingharvestandsporediffusion.TLG1expressedinEscherichiacoliandAspergillusoryzaeexhibitedβ-1,3-glucanaseactivityand,whenpurifiedfromtheL.edodesfruitingbody,demonstratedlentinandegradingactivity.Thus,wesuggestthatTLG1isinvolvedinlentinanandcellwalldegradationduringsenescencefollowingharvestandsporediffusion.
Effectsofbenzothiadiazoleandacetylsalicylicacidonβ-1,3‐glucanaseactivityanddiseaseresistanceinpotato.
Bokshi,A.I.,Morris,S.C.&Deverall,B.J.(2003).PlantPathology,52(1),22-27.
LinktoArticle
ReadAbstract
Benzothiadiazole(BTH),asBionWG50,andacetylsalicylicacid(ASA)treatmentsofpotatofoliageoffield-andglasshouse-grownpotatoplantswerecomparedforcontroloftwofoliardiseases,earlyblight(Alternariasolani)andpowderymildew(Erysiphecichoracearum).Theeffectofthesetreatmentsonharvestedtuberswound-inoculatedwiththedryrotfungus(Fusariumsemitectum)wasalsoevaluated.BTH(50mga.i.L-1)gavealmostcompletecontrolofbothfoliarpathogensoninoculatedglasshouse-grownplantsandreducedtheseverityofleafspottingdiseases(mainlyearlyblight)inthefield.BTH(100mga.i.L-1)andASA(400mga.i.L-1)reducedtheseverityofdryrotinfield-growntubersinsomepost-harvestwound-inoculatedtreatmentsbutnotothersandasimilarreductionoccurredwithtubersinoculatedpost-harvestfromBTH-treatedplantsgrownunderglasshouseconditions.BTHtreatmentincreasedβ-1,3-glucanaseactivityinleaves>stem>tubers>stolonsbutnotinroots.Increasedenzymeactivitywasrecordedforupto45dayspost-treatment.
Endo-β-1,3-glucanaseGLU1,fromthefruitingbodyofLentinulaedodes,belongstoanewglycosidehydrolasefamily.
Sakamoto,Y.,Nakade,K.&Konno,N.(2011).AppliedandEnvironmentalMicrobiology,77(23),8350-8354.
LinktoArticle
ReadAbstract
ThecellwallofthefruitingbodyofthemushroomLentinulaedodesisdegradedafterharvestingbyenzymessuchasβ-1,3-glucanase.Inthisstudy,anovelendo-typeβ-1,3-glucanase,GLU1,waspurifiedfromL.edodesfruitingbodiesafterharvesting.Thegeneencodingit,glu1,wasisolatedbyrapidamplificationofcDNAends(RACE)-PCRusingprimersdesignedfromtheN-terminalaminoacidsequenceofGLU1.Theputativeaminoacidsequenceofthematureproteincontained247aminoacidresidueswithamolecularmassof26kDaandapIof3.87,andrecombinantGLU1expressedinPichiapastorisexhibitedβ-1,3-glucanaseactivity.GLU1catalyzeddepolymerizationofglucanscomposedofβ-1,3-linkedmainchains,andreactionproductanalysisbythin-layerchromatography(TLC)clearlyindicatedthattheenzymehadanendolyticmode.However,theaminoacidsequenceofGLU1showednosignificantsimilaritytoknownglycosidehydrolases.GLU1hassimilaritytoseveralhypotheticalproteinsinfungi,andGLU1andhighlysimilarproteinsshouldbeclassifiedasanovelglycosidehydrolasefamily(GH128).
A(1→3)-β-glucanaseexpressedduringoatendospermdevelopment.
Martin,D.J.&Somers,D.A.(2004).JournalofCerealScience,39(2),265-272.
LinktoArticle
ReadAbstract
Inmaturekernelsofoat(AvenasativaL.)andothercereals,mixed-linked(11→33;11→34)-β-glucansandarABInoxylansaremajorstructuralpolysaccharidesincellwallsoftheendosperm.However,(1→3)-β-glucansaredepositedtransientlyinwallsduringcellularizationofendospermearlyingraindevelopment[Planta202(1997)414–426].Theabsenceof(1→3)-β-glucansinmatureendospermcellwallssuggeststhat(1→3)-β-glucanasesareactiveduringendospermdevelopment.Toinvestigatetheroleofβ-glucanasesduringendospermdevelopment,a(1→3)-β-glucanasecDNA,Oglc13,wasisolatedfromanoat(A.sativaL.)kernelcDNAlibrary.Theenzymaticactivityoftheproteinproduct,OGLC13,expressedfromthecDNAinaninvitroexpressionsystem,exhibitedsubstratespecificityfor(1→3)-β-glucans.Oglc13transcriptsweredetectedintheendospermofportionsofdevelopingkernelswiththehigheststeadystatelevelofmRNAat15daysafteranthesis(DAA)andnotinvegetativetissues.AntibodiesraisedagainstOGLC13immunoprecipitated(1→3)-β-glucanaseactivityfromendospermextractsof10and15DAAkernelsandmilkyendospermextractedfrom15DAAkernels.TheOGLC13antibodiesdidnotprecipitate(1→3)-β-glucanaseactivityfromleafextracts.TheseresultsindicatedthatOglc13isaunique(1→3)-β-glucanaseexpressedearlyinendospermdevelopment.
InductionofdefenceresponsesinrootsandmesocotylsofsorghumseedlingsbyinoculationwithFusariumthapsinumandF.proliferatum,woundingandlight.
Huang,L.D.&Backhouse,D.(2005).JournalofPhytopathology,153(9),522-529.
LinktoArticle
ReadAbstract
Thedefencereactionsofsorghumseedlings7daysafterinoculationwithFusariumthapsinumandF.proliferatum,andinteractionswithwoundingandexposuretolightwerestudiedtodeterminewhetherresponsestothesefungidifferedfromthosetoabioticstresses.Innon-woundedplants,inoculationwithbothfungiincreasedconcentrationsofanthocyaninsandsolublephenolicsandactivitiesofperoxidase(POX),chitinaseandβ-1,3-glucanaseintheroots,andincreasedβ-1,3-glucanaseactivityinthemesocotyls.Therewasnoeffectofinoculationonphenylalanineammonia-lyase(PAL)activity.Woundingbyitselfincreasedanthocyanincontentofmesocotyls.Woundingalsohadavarietyofinteractionswithinoculation.Exposuretolighthadverylittleeffectonanydefenceresponsemeasured.Atimecourseexperimentshowedthatinductionofchitinaseandβ-1,3-glucanaseoccurredinlessthan24hafterinoculation.POXactivityincreased2daysafterinoculation,followedbyatransientincreaseinPALactivity.Thecontentofanthocyaninsandsolublephenolicsinrootsofinoculatedseedlingsincreasedgraduallycomparedwithcontrolsover6days.TheresponsesofsorghumseedlingstoinoculationwithF.thapsinumandF.proliferatumweresimilartothosefoundbyotherworkersfollowingchallengebynecrotrophicpathogensandweredifferentfromthoseinducedbywoundingandexposuretolight.
BioProspectinginpotatofieldsintheCentralAndeanHighlands:screeningofrhizobacteriaforplantgrowth-promotingproperties.
Ghyselinck,J.,Velivelli,S.L.S.,Heylen,K.,O’Herlihy,E.,Franco,J.,Rojas,M.,deVos,P.&Prestwich,B.D.(2013).SystematicandAppliedMicrobiology,36(2),116-127.
LinktoArticle
ReadAbstract
TheCentralAndeanHighlandsarethecenteroforiginofthepotatoplant(Solanumtuberosum).AgesofmutualismbetweenpotatoplantsandsoilbacteriainthisregionsupportthehypothesisthatAndeansoilsharborinterestingplantgrowth-promoting(PGP)bacteria.Therefore,theaimofthisstudywastoisolaterhizobacteriafromAndeanecosystems,andtoidentifythosewithPGPproperties.Atotalof585bacterialisolateswereobtainedfromeightpotatofieldsintheAndesandtheywerescreenedforsuppressionofPhytophthorainfestansandRhizoctoniasolani.AntagoNISTicmechanismsweredeterminedandantagonisticisolateswerefurthertestedforphosphatesolubilization,1-aminocyclopropane-1-carboxylate(ACC)deaminaseactivity,andproductionofNH3-andindole-3-aceticacid(IAA).PGPwasstudiedinhealthyandR.solanidiseasedplantletsundergrowthroomconditions.PerformancewascomparedtothecommercialstrainB.subtilisFZB24®WG.Isolatesweredereplicatedwithmatrix-assistedlaserdesorption/ionizationtimeofflightmassspectrometry(MALDI-TOFMS),andidentifiedwith16SrRNAgenesequencingandmultilocussequenceanalysis(MLSA).Atotalof10%oftheisolateswereeffectiveantagonists,ofwhichmanywereabletosolubilizephosphate,andproduceIAA,ACCdeaminase,NH3andhydrogencyanide(HCN).Duringgrowthroomexperiments,23antagonisticisolateswereassociatedwithplantgrowth-promotionand/ordiseasesuppression.Tenisolateshadastatisticallysignificantimpactontestparameterscomparedtotheuninoculatedcontrol.Threeisolatessignificantlypromotedplantgrowthinhealthyplantletscomparedtothecommercialstrain,andsevenisolatesoutperformedthecommercialstrainininvitroR.solanidiseasedplantlets.
Green-odourcompoundshaveantifungalactivityagainstthericeblastfungusMagnaportheoryzae.
Tajul,M.I.,Motoyama,T.,Hatanaka,A.,Sariah,M.&Osada,H.(2012).EuropeanJournalofPlantPathology,132(1),91-100.
LinktoArticle
ReadAbstract
Fourgreen-odourcompounds—trans-2-hexenal,cis-3-hexenol,n-hexanal,andcis-3-hexenal—wereapplied(0.85µgml-1asvapour)toriceplantsinlaboratoryconditionstoobservetheirbiologicalactivityagainstthephytopathogenicfungusMaganportheoryzae,whichcausesriceblastdiseaseworldwide.Twocompounds,trans-2-hexenalandcis-3-hexenal,showedremarkablediseasesuppressionefficacy(99.7%and100%suppression,respectively),whilen-hexanalhadmoderate(86.5%)andcis-3-hexenolhadweak(20.8%)disease-suppressingeffects.Pre-applicationandpost-applicationoftrans-2-hexenalorcis-3-hexenalhadslighteffectsonblastincidence,suggestingthatthesecompoundshaddirecteffectstosuppressM.oryzaeinfection.Infact,trans-2-hexenalandcis-3-hexenalexhibitedagrowthsuppressioneffectonM.oryzae.Interestingly,thesetwocompoundsinhibitedappressoriumformationatlowerconcentrationsthanthegrowthsuppression.Studiesonthehypersensitiveresponse(HR)-likereactionandplantβ-1,3-glucanaseactivityinriceplantconfirmedthatinducedresistancewasnotthemajorfactorinvolvedinthediseasesuppressionmechanism.Resultsofthisstudyconclusivelyshowedthattrans-2-hexenalandcis-3-hexenalpossesspotentinhibitoryactivitiesagainstthegrowthandtheappressoriumformationofM.oryzaeandcouldbeusedasantifungalagentstosignificantlyreduceM.oryzaeinfectionsinrice.
AnovelantifungalPseudomonasfluorescensisolatedfrompotatosoilsinGreenland.
Michelsen,C.F.&Stougaard,P.(2011).CurrentMicrobiology,62(4),1185-1192.
LinktoArticle
ReadAbstract
ArhizobacteriumwithhighantifungalactivitywasisolatedfromapotatofieldatInneruulalik,SouthGreenland.PhylogeneticanalysisbasedonmultilocussequencetypingshowedthatthebacteriumwasaffiliatedwithstrainsofPseudomonasfluorescens.Thebacterium,denotedasPseudomonasfluorescensIn5,inhibitedinvitroabroadrangeofphytopathogenicfungi,andtheantifungalactivityincreasedwithdecreasingtemperature.MicrocosmexperimentsdemonstratedthatP.fluorescensIn5protectedtomatoseedlingsfromRhizoctoniasolani.TransposonmutagenesisshowedthatthemajorcausefortheantifungalactivityofP.fluorescensIn5wasanovelnon-ribosomalpeptidesynthase(NRPS)gene.Inaddition,transposonmutagenesisshowedthatP.fluorescensIn5alsocontainedaputativequinoproteinglucosedehydrogenasegene,whichwasinvolvedingrowthinhibitionofphytopathogenicfungi.AlthoughP.fluorescensIn5containedthecapacitytosynthesizehydrogencyanide,β-1,3-glucanase,protease,andchitinase,thesedidnotseemtoplayaroleintheinvitroandmicrocosmantifungalassays.
Phosphite-inducedsuppressionofPseudomonasbleedingcanker(Pseudomonassyringaepv.aesculi)ofhorsechestnut(AesculushippocastanumL.).
Percival,G.C.&Banks,J.M.(2015).ArboriculturalJournal:TheInternationalJournalofUrbanForestry,37(1),7-20.
LinktoArticle
ReadAbstract
Fieldtrialswereconductedusing4-year-oldhorsechestnut(AesculushippocastanumL.)toassesstheefficacyofpotassiumandsiliconphosphiteasplantprotectionagentsagainstthebacterialpathogenPseudomonassyringaepv.aesculi(Pae)thecausalagentofPseudomonasbleedingcankerofhorsechestnut.Phosphiteswereappliedpreventatively,i.e.beforePaeinoculationoftrees,andcuratively,i.e.afterPaeinoculationoftrees,and,asbothafoliarspray(FS)androotdrench(RD).Applicationofbothphosphiteformsinducedpositiveeffectsonplantvitality(increasedleafchlorophyllcontent,leafchlorophyllfluorescence(Fv/Fm),enhanceddefensiveenzymeactivity(β-1,3-glucanase,peroxidase)andreducedPaelesionsize,themainproxyofPaesuccessoraggressiveness.PreventativeratherthancurativephosphiteapplicationresultedingreaterreductionsinPaeseverity.Littlesignificanceofmodeofapplication(FS,RD)andphosphiteanion(potassium,silicon)wasdemonstratedindicatingbothphosphitescanbefoliarappliedorrootdrenchedwithsimilardegreesofresultingPaecontrol.SignificantreductionsinPaeseverityrecordedinthisstudygavecredencetothepotentialofphosphitesasanalternativeorcomplimenttoconventionalbactericidesforPaecontrol.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
Diversityofmicrobialcarbohydrate-activeenzymesinDanishanaerobicdigestersfedwithwastewatertreatmentsludge.
Wilkens,C.,Busk,P.K.,Pilgaard,B.,Zhang,W.J.,Nielsen,K.L.,Nielsen,P.H.&Lange,L.(2017).BiotechnologyforBiofuels,10(1),158.
LinktoArticle
ReadAbstract
Background:Improvedcarbohydrate-activeenzymes(CAZymes)areneededtofulfillthegoalofproducingfood,feed,fuel,chemicals,andmaterialsfrombiomass.Littleisknownabouthowthediversemicrobialcommunitiesinanaerobicdigesters(ADs)metabolizecarbohydratesorwhichCAZymesthatarepresent,makingtheADsauniquenichetolookforCAZymesthatcanpotentiatetheenzymeblendscurrentlyusedinindustry.Results:EnzymaticassaysshowedthatfunctionalCAZymesweresecretedintotheADenvironmentsinfourfull-scalemesophilicDanishADsfedwithprimaryandsurplussludgefrommunicipalwastewatertreatmentplants.MetagenomesfromtheADswereminedforCAZymeswithHomologytoPeptidePatterns(HotPep).19,335CAZymeswereidentifiedofwhich30%showed50%orloweridentitytoknownproteinsdemonstratingthatADsmakeupapromisingpoolfordiscoveryofnovelCAZymes.Afunctionwasassignedto54%ofallCAZymesidentifiedbyHotPep.Manydifferentα-glucan-actingCAZymeswereidentifiedinthefourmetagenomes,andthemostabundantfamilywasglycosidehydrolasefamily13,whichcontainsα-glucan-actingCAZymes.CellulyticandxylanolyticCAZymeswerealsoabundantinthefourmetagenomes.Thecellulyticenzymeswerelimitedalmosttoendoglucanasesandβ-glucosidases,whichreflectthelargeamountofpartlydegradedcelluloseinthesludge.NodockerindomainswereidentifiedsuggestingthatthecellulyticenzymesintheADsstudiedoperateindependently.OfxylanolyticCAZymes,especiallyxylanasesandβ-xylosidase,butalsoabatteryofaccessoryenzymes,werepresentinthefourADs.Conclusions:OurfindingssuggestthattheADsareagoodplacetolookfornovelplantbiomassdegradingandmodifyingenzymesthatcanpotentiatebiologicalprocessesandprovidebasisforproductionofarangeofadded-valueproductsfrombiorefineries.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们