
Megazyme/AZCL-Curdlan/I-AZCUR/3克
商品编号:
I-AZCUR
品牌:
Megazyme INC
市场价:
¥3288.00
美元价:
1972.80
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCL-Curdlanforidentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Substratefortheassayofendo-1,3-β-D-glucanase.
Flavobacteriumfrigidariumsp.nov.,anaerobic,psychrophilic,xylanolyticandlaminarinolyticbacteriumfromAntarctica.
Humphry,D.R.,George,A.,Black,G.W.&Cummings,S.P.(2001).InternationalJournalofSystematicandEvolutionaryMicrobiology,51(4),1235-1243.
LinktoArticle
ReadAbstract
Apsychrophilic,aerobicbacteriumdesignatedA2iTwasisolatedfrommarinesedimentrecoveredfromshallowwaterssurroundingAdelaideIsland,Antarctica(67°34"S,68°07"W).Theorganismexhibitedxylanolyticandlaminarinolyticactivityandwashalotolerant.Basiccharacterizationshowedthatitwasgram-negative,non-motile,yellow-pigmented(β,β-carotene-3,3"-diol)andpositiveforoxidaseandcatalasesynthesis.Analysisofthe16SrDNAsequencesuggeststhattheorganismbelongstotheFlexibacter-Cytophaga-Bacteroidesphylum.Onthebasisofits16SrDNAsequence,thebacteriumis96.8%similartoFlavobacteriumcolumnareATCC43622-itsclosestrelation.ThegenomicDNAG+Ccontentwas35mol%.Growthonxylanoccursoptimallyat15°C,thoughgrowthalsooccursat0°C,andthedoublingtimesare9.6and34.8h,respectively.Themaximumgrowthtemperatureonxylanisat24°C.Thebacteriumisaneutrophile,growingacrossthepHrange5.6-8.4andhavinganoptimumatpH7.5.Analysisofthe16SrDNAsequence,togetherwithphenotypiccharacterization,suggeststhattheorganismisamemberofthegenusFlavobacterium.DNA-DNAhybridizationexperimentshaveshownthatitisanovelspecies;itisproposed,therefore,thattheorganismbedesignatedasthetypestrainofFlavobacteriumfrigidariumsp.nov.(=ATCC700810T=NCIMB13737T).
Cloningandcharacterizationofanendo-β-1,3(4)glucanaseandanasparticproteasefromPhaffiarhodozymaCBS6938.
Bang,M.L.,Villadsen,I.&Sandal,T.(1999).AppliedMicrobiologyandBiotechnology,51(2),215-222.
LinktoArticle
ReadAbstract
Wedescribetheidentificationandexpressioncloningoftwonovelenzymes,aβ-glucanaseandanasparticprotease,secretedfromthebasidiomycetousyeastPhaffiarhodozyma.ACDNAlibraryfromP.rhodozymaCBS6938wasconstructed,andfull-lengthcDNAencodinganendo-1,3(4)-β-glucanase(bg1)andanasparticprotease(pr1)wereclonedbyexpressioncloninginSaccharomycescerevisiaeW3124.Thebg1cDNAencodesa424-residueprecursorproteinwithaputativesignalpeptide.Thepr1cDNAencodesa405-residueprepropolypeptidewithan81-residueleaderpeptide.Theasparticproteasewaspurifiedandcharacterized.Ithasamolecularmassof36 kDa,anisoelectricpointofpH7.5,apHactivityoptimumat4.0–6.0,andatemperatureactivityoptimumaround40°C.Bothenzymesshowonlylowsequenceidentitytootherknownenzymes.
Diversityandcold-activehydrolyticenzymesofculturablebacteriaassociatedwithArcticseaice,Spitzbergen.
Groudieva,T.,Kambourova,M.,Yusef,H.,Royter,M.,Grote,R.,Trinks,H.&Antranikian,G.(2004).Extremophiles,8(6),475-488.
LinktoArticle
ReadAbstract
ThediversityofculturablebacteriaassociatedwithseaicefromfourpermanentlycoldfjordsofSpitzbergen,ArcticOcean,wasinvestigated.Atotalof116psychrophilicandpsychrotolerantstrainswereisolatedunderaerobicconditionsat4°C.TheisolatesweregroupedusingamplifiedrDNArestrictionanalysisfingerprintingandidentifiedbypartialsequencingof16SrRNAgene.Thebacterialisolatesfellinfivephylogeneticgroups:subclassesαandγofProteobacteria,theBacillus–Clostridiumgroup,theorderActinomycetales,andtheCytophaga–Flexibacter–Bacteroides(CFB)phylum.Over70%oftheisolateswereaffiliatedwiththeProteobacteriaγsubclass.Basedonphylogeneticanalysis(<98% sequence="" similarity),="" over="" 40%="" of="" arctic="" isolates="" represent="" potentially="" novel="" species="" or="" genera.="" most="" of="" the="" isolates="" were="" psychrotolerant="" and="" grew="" optimally="" between="" 20="" and="" 25°c.="" only="" a="" few="" strains="" were="" psychrophilic,="" with="" an="" optimal="" growth="" at="" 10–15°c.="" the="" majority="" of="" the="" bacterial="" strains="" were="" able="" to="" secrete="" a="" broad="" range="" of="" cold-active="" hydrolytic="" enzymes="" into="" the="" medium="" at="" a="" cultivation="" temperature="" of="" 4°c.="" the="" isolates="" that="" are="" able="" to="" degrade="" proteins="" (skim="" milk,="" casein),="" lipids="" (olive="" oil),="" and="" polysaccharides="" (starch,="" pectin)="" account="" for,="" respectively,="" 56,="" 31,="" and="" 21%="" of="" sea-ice="" and="" seawater="" strains.="" the="" temperature="" dependences="" for="" enzyme="" production="" during="" growth="" and="" enzymatic="" activity="" were="" determined="" for="" two="" selected="" enzymes,="" α-amylase="" and="" β-galactosidase.="" interestingly,="" high="" levels="" of="" enzyme="" productions="" were="" measured="" at="" growth="" temperatures="" between="" 4="" and="" 10°c,="" and="" almost="" no="" production="" was="" detected="" at="" higher="" temperatures="" (20–30°c).="" catalytic="" activity="" was="" detected="" even="" below="" the="" freezing="" point="" of="" water="" (at="" −5°c),="" demonstrating="" the="" unique="" properties="" of="" these="" enzymes.="">98%>
Identification,cloningandcharacterizationofDictyoglomusturgidumCelA,anendoglucanasewithcellulaseandmannanaseactivity.
Brumm,P.J.,Hermanson,S.,Luedtke,J.&Mead,D.A.(2011).JournalofLifeSciences,5,488-496.
LinktoArticle
ReadAbstract
Thediscoveryofnew,highlyactive,biomass-degrADIngenzymesisimportanttothedevelopmentofasustainablebiofuelsindustry.Dictyoglomusturgidum,aThermophilic,anaerobiceubacteriumthatfermentscelluloseandproducesethanolandhydrogen,waschosenasacandidatetoscreenfornovelenzymes.Anovelthermostableendoglucanase,CelA,wasidentifiedandpurifiedduringscreeningofashotgunlibraryofDictyoglomusturgidumandsubsequentlysubclonedandexpressedinE.coli.ThecelAgenecodingfora312aminoacidproteinshowedlowhomologytoproteinsoutsidethegenusDictoglomiandlackedanapparentsignalpeptide.CelAhadabroadsubstraterange,possessingbothendoandexoactivityonsolubleandinsolubleβ-(1,4)-linkedglucose-containingsubstratesaswellasendoactivityonsolubleandinsolubleβ-(1,4)-linkedmannosecontainingsubstrates.ThespecificactivityofCelAwas226U/mgusingβ-glucan,66U/mgusingglucomannan,and63U/mgusingCMCassubstrates.Thehightemperatureoptimumof70°Cto80°Candwidesubstraterangeoftheenzymemightmakeitanexcellenttoolforbiomassdegradationathightemperature.
Evolutionarytransitionsinenzymeactivityofantfungusgardens.
DeFineLicht,H.H.,Schiøtt,M.,Mueller,U.G.&Boomsma,J.J.(2010).Evolution,64(7),2055-2069.
LinktoArticle
ReadAbstract
Fungus-growing(attine)antsandtheirfungalsymbiontspassedthroughseveralevolutionarytransitionsduringtheir50millionyearoldevolutionaryhistory.Thebasalattinelineagesoftenshiftedbetweentwomaincultivarclades,whereasthederivedhigher-attinelineagesmaintainedanassociationwithamonophyleticcladeofspecializedsymbionts.Inconjunctionwiththetransitiontospecializedsymbionts,theantsadvancedincolonysizeandsocialcomplexity.Hereweprovideacomparativestudyofthefunctionalspecializationinextracellularenzymeactivitiesinfungusgardensacrosstheattinephylogeny.Weshowthat,relativetosisterclades,gardensofhigher-attineantshaveenhancedactivityofprotein-digestingenzymes,whereasgardensofleaf-cuttingantsalsohaveincreasedactivityofstarch-digestingenzymes.However,theenzymeactivitiesoflower-attinefungusgardensaretargetedprimarilytowardpartialdegradationofplantcellwalls,reflectingaplesiomorphicstateofnondomesticatedfungi.Theenzymeprofilesofthehigher-attineandleaf-cuttinggardensappearparticularlysuitedtodigestfreshplantmaterialsandtoaccessnutrientsfromlivecellswithoutmajorbreakdownofcellwalls.Theadaptivesignificanceofthelower-attinesymbiontshiftsremainsunclear.Oneoftheseshiftswasobligate,butdigestiveadvantagesremainedambiguous,whereastheotherremainedfacultativedespiteprovidinggreaterdigestiveefficiency.
Nucleotidesequenceofaβ-1,3-glucanaseisoenzymeIIAgeneofOerskoviaxanthineolyticaLLG109(Cellulomonascellulans)andinitialcharacterizationoftherecombinantenzymeexpressedinBacillussubtilis.
Ferrer,P.,Halkier,T.,Hedegaard,L.,Savva,D.,Diers,I.&Asenjo,J.A.(1996).JournalofBacteriology,178(15),4751-4757.
LinktoArticle
ReadAbstract
ThenucleotidesequenceoftheβgIIIAgene,encodingtheextracellularβ-1,3-glucanaseIIA(βgIIIA)oftheyeast-lyticactinomyceteOerskoviaxanthineolyticaLLG109,wasdetermined.SequencecomparisonshowsthattheβgIIIAenzymehasover80%identitytotheβgIIIisoenzyme,anendo-β-1,3-glucanasehavinglowyeast-lyticactivitysecretedbythesamebacterium.TheβgIIIAenzymelacksaglucan-ormannan-bindingdomain,suchasthoseobservedinβ-1,3-glucanasesandproteaseshavinghighyeast/fungus-lyticactivity.Itcanbeincludedintheglycosylhydrolasefamily16.GenefusionexpressioninBacillussubtilisDN1885followedbypreliminarycharacterizationoftherecombinantgeneproductindicatesthatβgIIIAhasapIof3.8to4.0andisactiveonbothlaminarinandcurdlan,havinganacidoptimumpHactivity(ca.4.0).
Pseudoalteromonasarcticasp.nov.,anaerobic,psychrotolerant,marinebacteriumisolatedfromSpitzbergen.
AlKhudary,R.,Stößer,N.I.,Qoura,F.&Antranikian,G.(2008).InternationalJournalofSystematicandEvolutionaryMicrobiology,58(9),2018-2024.
LinktoArticle
ReadAbstract
Anovelaerobic,psychrotolerantmarinebacteriumwasisolatedat4°CfromseawatersamplescollectedfromSpitzbergenintheArctic.Thestrainwasapolar-flagellated,Gram-negativebacteriumthatgrewoptimallyat10–15°CandpH7–8inmediacontaining2–3 %NaCl(w/v),usingvariouscarbohydratesandorganicacidsassubstrates.Themainfattyacidcomponentsincluded16 : 0(12.7 %oftotalfattyacids),straight-chainsaturatedfattyacidmethylester(FAME)and16 : 1ω7c(40.2 %)monounsaturatedFAME.Phylogeneticanalysisrevealedacloserelationship(99 %16SrRNAgenesequencesimilarity)betweenthenovelisolateandPseudoalteromonaselyakoviiKMM162TandsomeotherspeciesofthegenusPseudoalteromonas.TheDNAG+Ccontentofthenovelstrainwas39mol%.DNA–DNAhybridizationshowedonly47.6 %DNA–DNArelatednesswithP.elyakoviiKMM162T,44.2 %withPseudoalteromonasdistinctaKMM638Tand22.6 %withPseudoalteromonasnigrifaciensNCIMB8614TBasedonphylogeneticandphenotypiccharacteristics,thisisolaterepresentsanovelspeciesofthegenusPseudoalteromonasforwhichthenamePseudoalteromonasarcticaisproposed;thetypestrainisA37-1-2T(=LMG23753T=DSM18437T).
MiningDictyoglomusturgidumforenzymaticallyactivecarbohydrases.
Brumm,P.,Hermanson,S.,Hochstein,B.,Boyum,J.,Hermersmann,N.,Gowda,K.&Mead,D.(2011).AppliedBiochemistryandBiotechnology,163(2),205-214.
LinktoArticle
ReadAbstract
ThegenomeofDictyoglomusturgidumwassequencedandanalyzedforcarbohydrases.Thebroadrangeofcarbohydratesubstrateutilizationisreflectedinthehighnumberofglycosylhydrolases,54,andthehighpercentageofCAZymespresentinthegenome,3.09%ofitstotalgenes.ScreeningarandomclonelibrarygeneratedfromD.turgidumresultedinthediscoveryoffivenovelbiomass-degradingenzymeswithlowhomologytoknownmolecules.Wholegenomesequencingoftheorganismfollowedbybioinformatics-directedamplificationofselectedgenesresultedintherecoveryofsevenadditionalnovelenzymemolecules.Basedontheanalysisofthegenome,D.turgidumdoesnotappeartodegradecelluloseusingeitherconventionalsolubleenzymesoracellulosomaldegradationsystem.Thetypesandquantitiesofglycosylhydrolasesandcarbohydrate-bindingmodulespresentinthegenomesuggestthatD.turgidumdegradescelluloseviaamechanismsimilartothatusedbyCytophagahutchinsoniiandFibrobactersuccinogenes.
Patternsoffunctionalenzymeactivityinfungusfarmingambrosiabeetles.
Licht,H.H.D.F.&Biedermann,P.H.(2012).FrontiersinZoology,9(1),13.
LinktoArticle
ReadAbstract
Introduction:Inwood-dwellingfungus-farmingweevils,theso-calledambrosiabeetles(Curculionidae:ScolytinaeandPlatypodinae),woodintheexcavatedtunnelsisusedasamediumforcultivatingfungibythecombinedactionofdigginglarvae(whichcreatemorespaceforthefungitogrow)andofadultssowingandpruningthefungus.Thebeetlesareobligatelydependentonthefungusthatprovidesessentialvitamins,aminoacidsandsterols.However,towhatextentmicrobialenzymessupportfungusfarminginambrosiabeetlesisunknown.Herewemeasure(i)13plantcell-walldegradingenzymesinthefungusgardenmicrobialconsortiumoftheambrosiabeetleXyleborinussaxesenii,includingitsprimaryfungalsymbionts,inthreecompartmentsoflaboratorymaintainednests,atdifferenttimepointsaftergalleryfoundationand(ii)fourspecificenzymesthatmaybeeitherinsectormicrobiallyderivedinX.saxeseniiadultandlarvalindividuals.Results:Wediscoveredthattheactivityofcellulasesinambrosiafungusgardensisrelativelysmallcomparedtotheactivitiesofothercellulolyticenzymes.Enzymeactivityinallcompartmentsofthegardenwasmainlydirectedtowardshemicellulosecarbohydratessuchasxylan,glucomannanandcallose.Hemicellulolyticenzymeactivitywithinthebroodchamberincreasedwithgalleryage,whereasirrespectiveoftheageofthegallery,thehighestoverallenzymeactivityweredetectedinthegallerydumpmaterialexpelledbythebeetles.Interestinglyendo-β-1,3(4)-glucanaseactivitycapableofcallosedegradationwasidentifiedinwhole-bodyextractsofbothlarvaeandadultX.saxesenii,whereasendo-β-1,4-xylanaseactivitywasexclusivelydetectedinlarvae.Conclusion:Similartocloselyrelatedfungiassociatedwithbarkbeetlesinphloem,themicrobialsymbiontsofambrosiabeetleshardlydegradecellulose.Instead,theirenzymeactivityisdirectedmainlytowardscomparativelymoreeasilyaccessIBLehemicellulosecomponentsoftheray-parenchymacellsinthewoodxylem.Furthermore,thedetectionofxylanolyticenzymesexclusivelyinlarvae(whichfeedonfunguscolonizedwood)andnotinadults(whichfeedonlyinfungi)indicatesthatonlylarvae(pre-)digestplantcellwallstructures.ThisimpliesthatinX.saxeseniiandlikelyalsoinmanyotherambrosiabeetles,adultsandlarvaedonotcompeteforthesamefoodwithintheirnests-incontrast,larvaeincreasecolonyfitnessbyfacilitatingenzymaticwooddegradationandfunguscultivation.
TheuseofplantcellwalldegradingenzymesfromanewlyisolatedPenicilliumochrochloronBiourgeforviscosityreductioninethanolproductionwithfreshsweetpotatotubersasfeedstock.
Huang,Y.,Jin,Y.,Shen,W.,Fang,Y.,Zhang,G.&Zhao,H.(2013).BiotechnologyandAppliedBiochemistry,61(4),480-491.
LinktoArticle
ReadAbstract
PenicilliumochrochloronBiourge,whichwasisolatedfromrottensweetpotato,canproduceplantcellwalldegradingenzymes(PCWDEs)withhighviscosityreducingcapABIlityforethanolproductionusingfreshsweetpotatotubersasfeedstock.Theenzymepreparationwascharacterizedbyabroadenzymespectrumincluding13kindsofenzymeswiththeactivitytohydrolyzecellulose,hemicellulose,pectin,starchandprotein.Themaximumviscosityreducingcapabilitywasobservedwhentheenzymepreparationwasobtainedafterfivedaysfermentationusing20g/Lcorncobassolecarbonsource,4.5g/LNH4NO3assolenitrogensource,andaninitialmediumpHof6.5.Thesweetpotatomashtreatedwiththeenzymepreparationexhibitedmuchhigherfermentationefficiency(92.58%)comparedwithcommercialcellulase(88.06%)andcontrol(83.5%).Theenzymeproductionwasthenscaleduptothe0.5,5,and100L,andtheviscosityreducingrateswerefoundtobe85%,90%,and91%,respectively.Thus,P.ochrochloronBiourgedisplayspotentialviscosityreducingcapabilityforethanolproduction.
TheoptimizationofsomeextracellularenzymesbiosynthesisbyAspergillusniger377-4.Wikiera,A.,Mika,M.,Janiszewska,
A.S.&Zyla,K.(2015).JournalofScientific&IndustrialResearch,74,145-149.
LinktoArticle
ReadAbstract
Theeffectofinitialsolidandmoisturecontents,temperatureandtimeofincubationontheproductionofpolygalacturonase,phytase,acidphosphatase,xylanaseandβ-glucanasebyAspergillusniger377-4duringsolidstatefermentationwasstudied.Parametersofenzymesynthesiswereoptimizedusingstatisticalexperimentaldesigns.Itwasshownthatthecapacityofstraintosynthesizetheaforementionedenzymescouldbemodifiedwithinawiderangebycultureparametersselection.Theoptimalpolygalacturonaseproductionefficiencywasachievedwiththeinitialmediummassof19.9gandhumidityof59.9%,after77.7hofincubationat28.9°C.Thebestcombinationofcultureparametersforphytasesynthesiswas:initialmediummass19.9g,moistures50%,temperature33°Candincubationtime83.9h.Thehighestactivityofacidphosphatasewasobtainedafter81.3hofincubationat27°C,withinitialsubstratemassof17.8gandmoistnesscontentof60%.Theinitialsolidandmoisturecontentstosynthesizexylanasewere19.9gand50%,respectively,withincubationtimeof73hat29.6°C.Thehighestefficiencyofβ-glucanasebiosynthesiswasobtainedwhenA.niger377-4wascultivatedfor80.4hat27°Conainitialmediummassof20gandinitiallevelofmoistness59.9%.
StructuralandfunctionalcharacterizationofanovelfamilyGH1154-O-methyl-α-glucuronidasewithspecificityfordecoratedarabinogalactans.
Aalbers,F.,Turkenburg,J.P.,Davies,G.J.,Dijkhuizen,L.&vanBueren,A.L.(2015).JournalofMolecularBiology,427(24),3935-3946.
LinktoArticle
ReadAbstract
Glycosidehydrolasesareclusteredintofamiliesbasedonaminoacidsequencesimilarities,andbelongingtoaparticularfamilycaninferbiologicalactivityofanenzyme.FamilyGH115containsα-glucuronidaseswhereseveralmembershavebeenshowntohydrolyzeterminalα-1,2-linkedglucuronicacidand4-O-methylatedglucuronicacidfromtheplantcellwallpolysaccharideglucuronoxylan.OtherGH115enzymesshownoactivityonglucuronoxylan,andtherefore,ithasbeenproposedthatfamilyGH115maybeapoly-specificfamily.Inthisstudy,werevealthataputativeperiplasmicGH115fromthehumangutsymbiontBacteroidesthetaiotaomicron,BtGH115A,hydrolyzesterminal4-O-methyl-glucuronicacidresiduesfromdecoratedarabinogalactanisolatedfromacaciatree.Thethree-dimensionalstructureofBtGH115ArevealsthatBtGH115Ahasthesamedomainarchitectureastheotherstructurallycharacterizedmemberofthisfamily,BoAgu115A;howeverthepositionoftheC-terminalmoduleisalteredwithrespecttoeachindividualenzyme.PhylogeneticanalysisofGH115aminosequencesdividesthefamilyintodistinctcladesthatmaydistinguishdifferentsubstratespecificities.Finally,weshowthatBtGH115Aα-glucuronidaseactivityisnecessaryforthesequentialdigestionofbranchedgalactansfromacaciagumbyagalactan-β-1,3-galactosidasefromfamilyGH43;however,whileB. thetaiotaomicrongrowsonlarchwoodarabinogalactan,thebacteriumisnotabletometabolizeacaciagumarabinogalactan,suggestingthatBtGH115Aisinvolvedindegradationofarabinogalactanfragmentsliberatedbyothermicrobialspeciesinthegastrointestinaltract.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
Diversityofmicrobialcarbohydrate-activeenzymesinDanishanaerobicdigestersfedwithwastewatertreatmentsludge.
Wilkens,C.,Busk,P.K.,Pilgaard,B.,Zhang,W.J.,Nielsen,K.L.,Nielsen,P.H.&Lange,L.(2017).BiotechnologyforBiofuels,10(1),158.
LinktoArticle
ReadAbstract
Background:Improvedcarbohydrate-activeenzymes(CAZymes)areneededtofulfillthegoalofproducingfood,feed,fuel,chemicals,andmaterialsfrombiomass.Littleisknownabouthowthediversemicrobialcommunitiesinanaerobicdigesters(ADs)metabolizecarbohydratesorwhichCAZymesthatarepresent,makingtheADsauniquenichetolookforCAZymesthatcanpotentiatetheenzymeblendscurrentlyusedinindustry.Results:EnzymaticassaysshowedthatfunctionalCAZymesweresecretedintotheADenvironmentsinfourfull-scalemesophilicDanishADsfedwithprimaryandsurplussludgefrommunicipalwastewatertreatmentplants.MetagenomesfromtheADswereminedforCAZymeswithHomologytoPeptidePatterns(HotPep).19,335CAZymeswereidentifiedofwhich30%showed50%orloweridentitytoknownproteinsdemonstratingthatADsmakeupapromisingpoolfordiscoveryofnovelCAZymes.Afunctionwasassignedto54%ofallCAZymesidentifiedbyHotPep.Manydifferentα-glucan-actingCAZymeswereidentifiedinthefourmetagenomes,andthemostabundantfamilywasglycosidehydrolasefamily13,whichcontainsα-glucan-actingCAZymes.CellulyticandxylanolyticCAZymeswerealsoabundantinthefourmetagenomes.Thecellulyticenzymeswerelimitedalmosttoendoglucanasesandβ-glucosidases,whichreflectthelargeamountofpartlydegradedcelluloseinthesludge.NodockerindomainswereidentifiedsuggestingthatthecellulyticenzymesintheADsstudiedoperateindependently.OfxylanolyticCAZymes,especiallyxylanasesandβ-xylosidase,butalsoabatteryofaccessoryenzymes,werepresentinthefourADs.Conclusions:OurfindingssuggestthattheADsareagoodplacetolookfornovelplantbiomassdegradingandmodifyingenzymesthatcanpotentiatebiologicalprocessesandprovidebasisforproductionofarangeofadded-valueproductsfrombiorefineries.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们