Megazyme/AZCL-半乳聚糖(马铃薯)/I-AZGLP/3克
商品编号:
I-AZGLP
品牌:
Megazyme INC
市场价:
¥3864.00
美元价:
2318.40
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCL-Galactan(Potato)foridentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Substratefortheassayofendo-1,4-β-D-galactanase.
BifidobacteriumlongumendogalactanaseliberatesgalactotriosefromtypeIgalactans.
Hinz,S.W.A.,Pastink,M.I.,vandenBroek,L.A.M.,Vincken,J.P.&Voragen,A.G.J.(2005).AppliedandEnvironmentalMicrobiology,71(9),5501-5510.
LinktoArticle
ReadAbstract
Aputativeendogalactanasegeneclassifiedintoglycosidehydrolasefamily53wasrevealedfromthegenomesequenceofBifidobacteriumlongumstrainNCC2705(Schelletal.,Proc.Natl.Acad.Sci.USA99:14422-14427,2002).Sinceonlyafewendo-actingenzymesfrombifidobacteriahavebeendescribed,wehaveclonedthisgeneandcharacterizedtheenzymeindetail.Thededucedaminoacidsequencesuggestedthatthisenzymewaslocatedextracellularlyandanchoredtothecellmembrane.galAwasclonedwithoutthetransmembranedomainintothepBluescriptSK(−)vectorandexpressedinEscherichiacoli.Theenzymewaspurifiedfromthecellextractbyanion-exchangeandsizeexclusionchromatography.Thepurifiedenzymehadanativemolecularmassof329kDa,andthesubunitshadamolecularmassof94kDa,whichindicatedthattheenzymeoccurredasatetramer.TheoptimalpHofendogalactanaseactivitywas5.0,andtheoptimaltemperaturewas37°C,usingazurine-cross-linkedgalactan(AZCL-galactan)asasubstrate.TheKmandVmaxforAZCL-galactanwere1.62mMand99U/mg,respectively.Theenzymewasabletoliberategalactotrisaccharidesfrom(β1→4)galactansand(β1→4)galactooligosaccharides,probablybyaprocessivemechanism,movingtowardthereducingendofthegalactanchainafteraninitialmidchaincleavage.GalA"smodeofactionwasfoundtobedifferentfromthatofanendogalactanasefromAspergillusaculeatus.Theenzymeseemedtobeabletocleave(β1→3)linkages.ArABInosylsidechainsin,forexample,potatogalactanhinderedGalA.
CharacterizationoftheErwiniachrysanthemiganlocus,involvedingalactancatabolism.
Delangle,A.,Prouvost,A.F.,Cogez,V.,Bohin,J.P.,Lacroix,J.M.&Cotte-Pattat,N.H.(2007).JournalofBacteriology,189(19),7053-7061.
LinktoArticle
ReadAbstract
β-1,4-Galactanisamajorcomponentoftheramifiedregionsofpectin.AnalysisofthegenomeoftheplantpathogenicbacteriaErwiniachrysanthemirevealedthepresenceofaclusterofeightgenesencodingproteinspotentiallyinvolvedingalactanutilization.ThepredictedtransportsystemwouldcompriseaspecificporinGanLandanABCtransportermadeoffourproteins,GanFGK2.Degradationofgalactanswouldbecatalyzedbytheperiplasmic1,4-β-endogalactanaseGanA,whichreleasedoligogalactansfromtrimertohexamer.Aftertheirtransportthroughtheinnermembrane,oligogalactanswouldbedegradedintogalactosebythecytoplasmic1,4-β-exogalactanaseGanB.Mutantsaffectedfortheporinorendogalactanasewereunabletogrowongalactans,buttheygrewongalactoseandonamixtureofgalactotriose,galactotetraose,galactopentaose,andgalactohexaose.Mutantsaffectedfortheperiplasmicgalactanbindingprotein,thetransporterATPase,ortheexogalactanasewereonlyabletogrowongalactose.Thus,thephenotypesofthesemutantsconfirmedthefunctionalityoftheganlocusintransportandcatabolismofgalactans.ThesemutationsdidnotaffectthevirulenceofE.chrysanthemionchicoryleaves,potatotubers,orSaintpauliaionantha,suggestinganaccessoryroleofgalactanutilizationinthebacterialpathogeny.
Large-scaleextractionofrhamnogalacturonanIfromindustrialpotatowaste.
Byg,I.,Diaz,J.,Øgendal,L.H.,Harholt,J.,Jørgensen,B.,Rolin,C.,Rolin,C.,Svava,R.&Ulvskov,P.(2012).FoodChemistry,131(4),1207-1216.
LinktoArticle
ReadAbstract
Potatopulpisrichindietaryfibresandisanunderutilisedmaterialproducedinlargequantitiesbythepotatostarchfactories.PotatofibresareespeciallyrichinrhamnogalacturonanI(RGI).RGIisapecticpolysaccharidewithahighdegreeofbranchinganduntilnowundegradedRGIhasonlybeenextractedinsmallamountslimitingtheapplicationpossibilitiesforRGI.Thepresentpaperdescribesalarge-scaleextractionprocessprovidinglargequantitiesofundegradedRGIreADIlyavailable.TheextractionprocessincludesenzymaticstarchremovalusingpurifiedTermamyl,enzymaticRGIsolubilisationusingahighlypurifiedpolygalacturonase,andfinallypurificationusingdepthfiltrationandultrafiltration.TheextractedRGIhasahighmolecularweightandamonosaccharidecompositioncomparabletoRGIextractedbyanalyticalextractionprocedures.ThelargeamountofRGIavailablebythepresentedmethodallowsforthoroughstructure–functionanalysesandtailoringofRGItospecificfunctionalities.
StructuralandbiochemicalstudieselucidatethemechanismofrhamnogalacturonanlyasefromAspergillusaculeatus.
Jensen,M.H.,Otten,H.,Christensen,U.,Borchert,T.V.,Christensen,L.L.H.,Larsen,S.&Leggio,L.L.(2010).JournalofMolecularBiology,404(1),100-111.
LinktoArticle
ReadAbstract
Wepresentherethefirstexperimentalevidenceforboundsubstrateintheactivesiteofarhamnogalacturonanlyasebelongingtofamily4ofpolysaccharidelyases,Aspergillusaculeatusrhamnogalacturonanlyase(RGL4).RGL4isinvolvedinthedegradationofrhamnogalacturonan-I,animportantpecticplantcellwallpolysaccharide.Basedonthepreviouslydeterminedwild-typestructure,enzymevariantsRGL4_H210AandRGL4_K150Ahavebeenproducedandcharacterizedbothkineticallyandstructurally,showingthatHis210andLys150arekeyactive-siteresidues.CrystalsoftheRGL4_K150Avariantsoakedwitharhamnogalacturonandigestgaveaclearpictureofsubstrateboundinthe−3/+3subsites.ThecrystallographicandkineticstudiesonRGL4,andstructuralandsequencecomparisontootherenzymesinthesameandotherPLfamilies,enableustoproposeadetailedreactionmechanismfortheβ-eliminationon[-,2)-α-L-rhamno-(1,4)-α-D-galacturonicacid-(1,-].Themechanismdifferssignificantlyfromtheoneestablishedforpectatelyases,inwhichmostoftencalciumionsareengagedincatalysis.
Simultaneousinvivotruncationofpecticsidechains.
Øbro,J.,Borkhardt,B.,Harholt,J.,Skjøt,M.,Willats,W.G.T.&Ulvskov,P.(2009).TransgenicResearch,18(6),961-969.
LinktoArticle
ReadAbstract
Despitethewideoccurrenceofpectininnatureonlyafewsourcematerialshavebeenusedtoproducecommercialpectins.Oneofthereasonsforthisisthatmanyplantspeciescontainpectinswithhighlevelsofneutralsugarsidechainsorthatarehighlysubstitutedwithacetylorothergroups.Thesemodificationsoftenpreventgelation,whichhasbeenamajorfunctionalrequirementofcommercialpectinsuntilrecently.WehavepreviouslyshownthatmodificationofpectinispossIBLethroughheterologousexpressionofpectindegradingenzymesinplanta.TotesttheeffectofsimultaneousmodificationofthetwomainneutralpecticsidechainsinpecticrhamnogalacturonanI(RGI),weconstitutivelyexpressedtwodifferentenzymesinArabidopsisthalianathatwouldeithermodifythegalactanorthearabinansidechains,orbothsidechainssimultaneously.OuranalysisshowedthatthesimultaneoustruncationofarabinanandgalactansidechainsisachievableanddoesnotseverelyaffectthegrowthofArabidopsisthaliana.
Theβ-1,4‐endogalactanaseAgenefromAspergillusnigerisspecificallyinducedonarabinoseandgalacturonicacidandplaysanimportantroleinthedegradationofpectichairyregions.
deVries,R.P.,Pařenicová,L.,Hinz,S.W.A.,Kester,H.C.M.,Beldman,G.,Benen,J.A.E.&Visser,J.(2002).EuropeanJournalofBiochemistry,269(20),4985-4993.
LinktoArticle
ReadAbstract
TheAspergillusnigerβ-1,4-endogalactanaseencodinggene(galA)wasclonedandcharacterized.TheexpressionofgalAinA.nigerwasonlydetectedinthepresenceofsugarbeetpectin,D-galacturonicacidandL-arabinose,suggestingthatgalAiscoregulatedwithboththepectinolyticgenesaswellasthearabinanolyticgenes.Thecorrespondingenzyme,endogalactanaseA(GALA),containsbothactivesiteresiduesidentifiedpreviouslyforthePseudomonasfluorescensβ-1,4-endogalactanase.ThegalAgenewasoverexpressedtofacilitatepurificationofGALA.Theenzymehasamolecularmassof48.5kDaandapHoptimumbetween4and4.5.Incubationsofarabinogalactansofpotato,onionandsoywithGALAresultedinitiallyinthereleaseofD-galactotrioseandD-galactotetraose,whereasprolongedincubationresultedinD-galactoseandD-galactobiose,predominantly.MALDI-TOFanalysisrevealedthereleaseofL-arabinosesubstitutedD-galactooligosaccharidesfromsoyarabinogalactan.Thisisthefirstreportoftheabilityofaβ-1,4-endogalactanasetoreleasesubstitutedD-galacto-oligosaccharides.GALAwasnotactivetowardsD-galacto-oligosaccharidesthatweresubstitutedwithD-glucoseatthereducingend.
Investigatingthebindingofβ-1,4‐galactantoBacilluslicheniformisβ-1,4‐galactanasebycrystallographyandcomputationalmodeling.
LeNours,J.,DeMaria,L.,Welner,D.,Jørgensen,C.T.,Christensen,L.L.H.,Borchert,T.V.,Larsen,S.&LoLeggio,L.(2009).Proteins:Structure,Function,andBioinformatics,75(4),977-989.
LinktoArticle
ReadAbstract
Microbialβ-1,4-galactanasesareglycosidehydrolasesbelongingtofamily53,whichdegradegalactanandarabinogalactansidechainsinthehairyregionsofpectin,amajorplantcellwallcomponent.TheybelongtothelargerclanGH-Aofglycosidehydrolases,whichcovermanydifferentpoly-andoligosaccharidasespecificities.CrystallographiccomplexesofBacilluslicheniformiβ-1,4-galactanaseanditsinactivenucleophilemutanthavebeenobtainedwithmethyl-β(1→4)-galactotetraoside,providing,forthefirsttime,informationonsubstratebindingtotheaglyconesideoftheβ-1,4-galactanasesubstratebindinggroove.Usingtheexperimentallydeterminedsubsitesasastartingpoint,aβ(1→4)-galactononaosewasbuiltintothestructureandsubjectedtomoleculardynamicssimulationsgivingfurtherinsightintotheresiduesinvolvedinthebindingofthepolysaccharidefromsubsite−4to+5.Inparticular,thisanalysisnewlyidentifiedaconservedβ-turn,whichcontributestosubsites−2to+3.Thisβ-turnisuniquetofamily53β-1,4-galactanasesamongallclanGH-Afamiliesthathavebeenstructurallycharacterizedandthusmightbeastructuralsignatureforendo-β-1,4-galactanasespecificity.
TheStructureofendo-β-1,4-galactanasefromBacilluslicheniformisinComplexwithTwoOligosaccharideProducts.
Ryttersgaard,C.,LeNours,J.,LoLeggio,L.,Jørgensen,C.T.,Christensen,L.L.H.,Bjørnvad,M.&Larsen,S.(2004).JournalofMolecularBiology,341(1),107-117.
LinktoArticle
ReadAbstract
Theβ-1,4-galactanasefromBacilluslicheniformis(BLGAL)isaplantcell-wall-degradingenzymeinvolvedinthehydrolysisofβ-1,4-galactaninthehairyregionsofpectin.ThecrystalstructureofBLGALwasdeterminedbymolecularreplacementbothaloneandincomplexwiththeproductsgalactobioseandgalactotriose,catchingafirstcrystallographicglimpseoffragmentsofβ-1,4-galactan.AsexpectedforanenzymebelongingtoGH-53,theBLGALstructurerevealsa(βα)8-barrelarchitecture.However,BLGALβα-loops2,7and8arelongincontrasttothecorrespondingloopsinstructuresoffungalgalactanasesdeterminedpreviously.ThestructureofBLGALadditionallyshowsacalciumionlinkingthelongβα-loops7and8,whichreplacesadisulphidebridgeinthefungalgalactanases.Comparedtothesubstrate-bindingsubsitespredictedforAspergillusaculeatusgalactanase(AAGAL),twoadditionalsubsitesforsubstratebindingarefoundinBLGAL,−3and−4.AcomparisonofthepatternofgalactanandgalactooligosaccharidesdegradationbyAAGALandBLGALshowsthat,althoughbotharemostactiveonsubstrateswithahighdegreeofpolymerization,AAGALcandegradegalactotrioseandgalactotetraoseefficiently,whereasBLGALpreferslongeroligosaccharidesandcannothydrolyzegalactotriosetoanyappreciableextent.Thisdifferenceinsubstratepreferencecanbeexplainedstructurallybythepresenceoftheextrasubsites−3and−4inBLGAL.
MiningDictyoglomusturgidumforenzymaticallyactivecarbohydrases.
Brumm,P.,Hermanson,S.,Hochstein,B.,Boyum,J.,Hermersmann,N.,Gowda,K.&Mead,D.(2011).AppliedBiochemistryandBiotechnology,163(2),205-214.
LinktoArticle
ReadAbstract
ThegenomeofDictyoglomusturgidumwassequencedandanalyzedforcarbohydrases.Thebroadrangeofcarbohydratesubstrateutilizationisreflectedinthehighnumberofglycosylhydrolases,54,andthehighpercentageofCAZymespresentinthegenome,3.09%ofitstotalgenes.ScreeningarandomclonelibrarygeneratedfromD.turgidumresultedinthediscoveryoffivenovelbiomass-degradingenzymeswithlowhomologytoknownmolecules.Wholegenomesequencingoftheorganismfollowedbybioinformatics-directedamplificationofselectedgenesresultedintherecoveryofsevenadditionalnovelenzymemolecules.Basedontheanalysisofthegenome,D.turgidumdoesnotappeartodegradecelluloseusingeitherconventionalsolubleenzymesoracellulosomaldegradationsystem.Thetypesandquantitiesofglycosylhydrolasesandcarbohydrate-bindingmodulespresentinthegenomesuggestthatD.turgidumdegradescelluloseviaamechanismsimilartothatusedbyCytophagahutchinsoniiandFibrobactersuccinogenes.
ExpressioncloninginKluyveromyceslactis.
vanderVlugt-Bergmans,C.J.B.&vanOoyen,A.J.J.(1999).BiotechnologyTechniques,13(1),87-92.
LinktoArticle
ReadAbstract
KluyveromyceslactiswasusedashostforanAspergillustubingensisexpressionlibrary.AnewepisomalvectorwasconstructedtodirecttheexpressionoftheA.tubingensisCDNAsandtoallowsubsequentanalysisinEscherichiacoli.Usingthreedifferentplateassays,18000K.lactisrecombinantswerescreened,yielding60galactanase-,26polygalacturonase-and16cellulase-secretingcolonies.Thegalactanase-secretingrecombinantswereanalysedindetail:theyaretranscriptsofthesamegalactanasegenewithsimilaritytoanA.aculeatusβ-1,4-galactanasegene.TheresultsoftheK.lactissystemcomparefavourablytothoseobtainedbySaccharomycescerevisiae.
StructuralandfunctionalcharacterizationofanovelfamilyGH1154-O-methyl-α-glucuronidasewithspecificityfordecoratedarabinogalactans.
Aalbers,F.,Turkenburg,J.P.,Davies,G.J.,Dijkhuizen,L.&vanBueren,A.L.(2015).JournalofMolecularBiology,427(24),3935-3946.
LinktoArticle
ReadAbstract
Glycosidehydrolasesareclusteredintofamiliesbasedonaminoacidsequencesimilarities,andbelongingtoaparticularfamilycaninferbiologicalactivityofanenzyme.FamilyGH115containsα-glucuronidaseswhereseveralmembershavebeenshowntohydrolyzeterminalα-1,2-linkedglucuronicacidand4-O-methylatedglucuronicacidfromtheplantcellwallpolysaccharideglucuronoxylan.OtherGH115enzymesshownoactivityonglucuronoxylan,andtherefore,ithasbeenproposedthatfamilyGH115maybeapoly-specificfamily.Inthisstudy,werevealthataputativeperiplasmicGH115fromthehumangutsymbiontBacteroidesthetaiotaomicron,BtGH115A,hydrolyzesterminal4-O-methyl-glucuronicacidresiduesfromdecoratedarabinogalactanisolatedfromacaciatree.Thethree-dimensionalstructureofBtGH115ArevealsthatBtGH115Ahasthesamedomainarchitectureastheotherstructurallycharacterizedmemberofthisfamily,BoAgu115A;howeverthepositionoftheC-terminalmoduleisalteredwithrespecttoeachindividualenzyme.PhylogeneticanalysisofGH115aminosequencesdividesthefamilyintodistinctcladesthatmaydistinguishdifferentsubstratespecificities.Finally,weshowthatBtGH115Aα-glucuronidaseactivityisnecessaryforthesequentialdigestionofbranchedgalactansfromacaciagumbyagalactan-β-1,3-galactosidasefromfamilyGH43;however,whileB. thetaiotaomicrongrowsonlarchwoodarabinogalactan,thebacteriumisnotabletometabolizeacaciagumarabinogalactan,suggestingthatBtGH115Aisinvolvedindegradationofarabinogalactanfragmentsliberatedbyothermicrobialspeciesinthegastrointestinaltract.
EffectofmutationsontheThermostabilityofAspergillusaculeatusβ-1,4-galactanase.
Torpenholt,S.,DeMaria,L.,Olsson,M.H.,Christensen,L.H.,Skjøt,M.,Westh,P.,Jensen,J.H.&Leggio,L.L.(2015).ComputationalandStructuralBiotechnologyJournal,13,256-264.
LinktoArticle
ReadAbstract
Newvariantsofβ-1,4-galactanasefromthemesophilicorganismAspergillusaculeatusweredesignedusingthestructureofβ-1,4-galactanasefromthethermophileorganismMyceliophthorathermophilaasatemplate.SomeofthevariantsweregeneratedusingPROPKA3.0,avalidatedpKapredictiontool,totestitsusefulnessasanenzymedesigntool.ThePROPKAdesignedvariantswereD182NandS185D/Q188T,G104D/A156R.VariantsY295FandG306Aweredesignedbyaconsensusapproach,asacomplementaryandvalidateddesignmethod.D58Nwasastabilizingmutationpredictedbybothmethods.Thepredictionswereexperimentallyvalidatedbymeasurementsofthemeltingtemperature(Tm)bydifferentialscanningcalorimetry.WefoundthattheTmiselevatedby1.1°CforG306A,slightlyincreased(intherangeof0.34to0.65°C)forD182N,D58N,Y295FandunchangedordecreasedforS185D/Q188TandG104D/A156R.TheTmchangeswereintherangepredictedbyPROPKA.Giventheexperimentalerrors,onlytheD58NandG306Ashowsignificantincreaseinthermodynamicstability.Giventhepracticalimportanceofkineticstability,thekineticsoftheirreversibleenzymeinactivationprocesswerealsoinvestigatedforthewild-typeandthreevariantsandfoundtobebiphasic.Thehalf-livesofthermalinactivationwereapproximatelydoubledinG306A,unchangedforD182Nand,disappointingly,alotlowerforD58N.Inconclusion,thisstudytestsanewmethodforestimatingTmchangesformutants,addstotheavailabledataontheeffectofsubstitutionsonproteinthermostabilityandidentifiesaninterestingthermostabilizingmutation,whichmaybebeneficialalsoinothergalactanases.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们