Megazyme/AZCL半乳甘露聚糖(角豆)/I-AZGMA/3克
商品编号:
I-AZGMA
品牌:
Megazyme INC
市场价:
¥3576.00
美元价:
2145.60
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCL-Galactomannan(Carob)foridentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Substratefortheassayofendo-1,4-β-D-mannanase.
Asimpleassayprocedureforβ-D-mannanase.
McCleary,B.V.(1978).CarbohydrateResearch,67(1),213-221.
LinktoArticle
ReadAbstract
Asimpleassayprocedureforβ-D-mannanaseenzymehasbeendevelopedwhichemployscarobD-galacto-D-mannandyedwithRemazolbrilliantBlue.Additionally,theprocedureisquantitative,relativelysensitive,andhighlyspecificforβ-D-mannanaseenzyme.ItcanbereADIlyusedforthedeterminationofβ-D-mannanaseactivityincrudeenzymepreparationsandcolumn-chromatographyeluates.
AhighlyThermostableendo-(1,4)-β-mannanasefromthemarinebacteriumRhodothermusmarinus.
Politz,O.,Krah,M.,Thomsen,K.K.&Borriss,R.(2000).AppliedMicrobiologyandBiotechnology,53(6),715-721.
LinktoArticle
ReadAbstract
RhodothermusmarinusATCC43812,athermophilicbacteriumisolatedfrommarinehotsprings,possesseshydrolyticactivitiesfordepolymerisingsubstratessuchascarob-galactomannan.Screeningofexpressionlibrariesidentifiedmannanase-positiveclones.Subsequently,thecorrespondingDNAsequencesweredetermined,eventuallyidentifyingacodingsequencespecifyinga997aminoacidresidueproteinof113 kDa.AnalysesrevealedanN-terminaldomainofunknownfunctionandaC-terminalmannanasedomainof550aminoacidresidueswithhomologytoknownmannanasesofglycosidasefamily26.ActionpatternanalysiscategorisedtheR.marinusmannanaseasanendo-actingenzymewitharequirementforatleastfivesugarmoietiesforeffectivecatalyticactivity.WhenexpressedinEscherichiacoli,purifiedgeneproductwithcatalyticactivitywasmainlyfoundastwoproteinfragmentsof45 kDaand50 kDa.Thefull-lengthproteinof113 kDawasonlydetectedincrudeextractsofR.marinus,whiletruncatedprotein-containingfractionsoftheoriginalsourceresultedinamajoractiveproteinof60 kDa.BiochemicalanalysisofthemannanaserevealedatemperatureandpHoptimumof85°CandpH 5.4,respectively.Purified,E.coli-producedproteinfragmentsshowedhighheatstABIlity,retainingmorethan70%and25%oftheinitialactivityafter1 hincubationat70°Cand90°C,respectively.Incontrast,R.marinus-derivedproteinretained87%activityafter1 hat90°C.Theenzymehydrolysedcarob-galactomannan(locustbeangum)effectivelyandtoasmallerextentguargum,butnotyeastmannan.
Taxonomicandfunctionaldiversityofpseudomonadsisolatedfromtherootsoffield‐growncanola.
Misko,A.L.&Germida,J.J.(2002).FEMSMicrobiologyEcology,42(3),399-407.
LinktoArticle
ReadAbstract
Amongthemostimportantrhizospherebacteriaarethepseudomonads,whichareaggressivecolonizersandutilizeawiderangeofsubstratesascarbonsources.Theobjectiveofthisstudywastodetermineifthetaxonomicormetabolicdiversityofpseudomonadsdifferedamongfield-growncanolacultivars.Bacteria(n=2257)wereisolatedfromtherhizosphereandrootinteriorofsixcultivarsoffield-growncanola,includingthreetransgenicvarieties.Thebacteriawereidentifiedbyfattyacidmethylester(FAME)analysis,andabout35%wereidentifiedasPseudomonasspecies.ThemostabundantspecieswerePseudomonasputidaandPseudomonaschlororaphis.DendrogramsbasedonFAMEanalysisrevealedthatmanypseudomonadstrainswerefoundinallofthecanolacultivars.Pseudomonadsofthesamestrainwerefoundinboththerhizosphereandtherootinteriorofcanolaplants,suggestingthatendophyticbacteriawereasubsetoftherhizospherecommunity.Becausemetabolicprofilingprovidesmoreusefulinformationthantaxonomy,P.putidaandP.chlororaphisisolateswerecharacterizedfortheirabilitytoutilizecarbonsubstratesandproduceseveralenzymes.Bacteriaisolatedfromdifferentplantcultivarshaddifferentcarbonutilizationprofiles,butwhenonlycarbonsubstratesfoundinrootexudateswereanalyzed,thecultivareffectwaslesspronounced.ThesecharacterizationsalsodemonstratedthatbacteriathatweredeterminedbyFAMEtobethesamestrainweremetabolicallydifferent,suggestingfunctionalredundancyamongPseudomonasisolates.Theresultsofthisstudysuggestthatpseudomonadswerefunctionallydiverse.Theydifferedintheirmetabolicpotentialamongthecanolacultivarsfromwhichtheywereisolated.Becausebacteriacapableofusingmanysubstratescaneffectivelyadapttonewenvironments,theseresultshaveimplicationsfortheuseofpseudomonadsasbiofertilizers,biologicalcontrolagentsandplantgrowth-promotingbacteriaincanola.
Verminephrobacteraporrectodeaesp.nov.subsp.tuberculataeandsubsp.caliginosae,thespecificnephridialsymbiontsoftheearthwormsAporrectodeatuberculataandA.caliginosa.
Lund,M.B.,Schätzle,S.,Schramm,A.&Kjeldsen,K.U.(2012).AntonievanLeeuwenhoek,101(3),507-514.
LinktoArticle
ReadAbstract
Clonelibrary-basedstudieshaveshownthatalmostalllumbricidearthwormspeciesharbourhost-specificsymbioticbacteriabelongingtothenovelgenusVerminephrobacterintheirnephridia(excretoryorgans).TodatetheonlydescribedrepresentativefromthisgenusisVerminephrobactereiseniae,thespecificsymbiontoftheearthwormEiseniafetida.Inthisstudytwonovelrod-shaped,non-endosporeforming,betaproteobacterialsymbiontswereisolatedfromthenephridiaoftwocloselyrelatedearthwormspecies.BothisolateswereaffiliatedwiththegenusVerminephrobacterby16SrRNAgenesequenceanalysis.SimilarlytoV.eiseniae,thetwoisolatesgrewaerobicallywithapreferenceforlowoxygenconcentrationsonarangeofsugars,fattyacidsandaminoacidsandfermentativelyonglucoseandpyruvate.Thesephenotypesmatchwellwiththeconditionsreportedorinferredforthenephridialenvironment.Basedon16SrRNAgenesimilarity,DNA–DNAhybridizationvalueandphenotypiccharacteristicsthetwoisolatesareclearlydistinctfromV.eiseniae.PhenotypiccharacteristicscouldnotclearlydifferentiatethetwostrainsasseparatespeciesbutalowDNA–DNAhybridizationvalueof57.3%,theirearthwormhostspecificity,differingtemperaturerangesandpHoptimasuggestthattheyrepresenttwosubspeciesofanovelspeciesofVerminephrobacter.Forthisspecies,thenameV.aporrectodeaesp.nov.isproposed,withthetwosubspeciesV.aporrectodeaesubsp.tuberculatae(typestrain,At4T=DSM21361T=LMG25313T)andV.aporrectodeaesubsp.caliginosae(typestrain,Ac9T=DSM21895T=LMG25312T)isolatedfromthenephridiaoftheearthwormsAporrectodeatuberculateandA.caliginosa,respectively.
LeMAN4endo-β-mannanasefromripetomatofruitcanactasamannantransglycosylaseorhydrolase.
Schröder,R.,Wegrzyn,T.F.,Sharma,N.N.&Atkinson,R.G.(2006).Planta,224(5),1091-1102.
LinktoArticle
ReadAbstract
Mannantransglycosylasesarecellwallenzymesabletotransferpartofthemannanpolysaccharidebackbonetomannan-derivedoligosaccharides(Schröderetal.inPlanta219:590–600,2004).Mannantransglycosylaseactivitywaspurifiedtonearhomogeneityfromripetomatofruit.N-terminalsequencingshowedthatthedominantbandseenonSDS-PAGEwasidenticaltoLeMAN4a,ahydrolyticendo-β-mannanasefoundinripetomatofruit(Bewleyetal.inJExpBot51:529–538,2000).RecombinantLeMAN4aproteinexpressedinEscherichiacoliexhibitedbothmannanhydrolaseandmannantransglycosylaseactivity.Westernanalysisofripetomatofruittissueusinganantibodyraisedagainsttomatoseedendo-β-mannanaserevealedfourisoformspresentafter2D-gelelectrophoresisinthepHrange6–11.Onseparationbypreparativeliquidisoelectricfocussing,thesenativeisoformsexhibiteddifferentpreferencesfortransglycosylationandhydrolysis.Theseresultsdemonstratethatendo-β-mannanasehastwoactivities:itcaneitherhydrolysemannanpolysaccharides,orinthepresenceofmannan-derivedoligosaccharides,carryoutatransglycosylationreaction.Wethereforeproposethatendo-β-mannanaseshouldberenamedmannantransglycosylase/hydrolase,inaccordancewiththenomenclatureestablishedforxyloglucanendotransglucosylase/hydrolase.Theroleofendo-actingmannanasesinmodifyingthestructureofplantcellwallsduringcellexpansion,seedgerminationandfruitripeningmayneedtobereinterpretedinlightoftheirpotentialactionastransglycosylatingorhydrolysingenzymes.
Populusendo‐beta‐mannanasePtrMAN6playsaroleincoordinatingcellwallremodelingwithsuppressionofsecondarywallthickeningthroughgenerationofoligosaccharidesignals.
Zhao,Y.,Song,D.,Sun,J.&Li,L.(2013).ThePlantJournal,74(3),473-485.
LinktoArticle
ReadAbstract
Endo-1,4-β-mannanaseisknowntoabletohydrolyzemannan-typepolysaccharidesincellwallremodeling,butitsfunctioninregulatingwallthickeninghasbeenlittlestudied.HereweshowthataPopulusendo-1,4-β-mannanasegene,namedPtrMAN6,suppressescellwallthickeningduringxylemdifferentiation.PtrMAN6isexpressedspecificallyinxylemtissueanditsencodedproteinlocalizestodevelopingvesselcells.OverexpressionofPtrMAN6enhancedwalllooseningaswellassuppressedsecondarywallthickening,whilstknockdownofitsexpressionpromotedsecondarywallthickening.TranscriptionalanalysisrevealedthatPtrMAN6overexpressiondownregulatedthetranscriptionalprogramofsecondarycellwallthickening,whilstPtrMAN6knockdownupregulatedtranscriptionalactivitiestowardsecondarywallformation.ActivityofPtrMAN6hydrolysisresultedinthegenerationofoligosaccharidecompoundsfromcellwallpolysaccharides.ApplicationoftheoligosaccharidesresultedincellularandtranscriptionalchangesthatweresimilartothosefoundinPtrMAN6overexpressedtransgenicplants.Overall,ourresultsdemonstratedthatPtrMAN6playsaroleinhydrolysisofmannan-typewallpolysaccharidestoproduceoligosaccharidesthatmayserveassignalingmoleculestosuppresscellwallthickeningduringwoodxylemcelldifferentiation.
Molecularandbiochemicalcharacterizationofendo-β-mannanasesfromgerminatingcoffee(Coffeaarabica)grains.
Marraccini,P.,Rogers,J.W.,Allard,C.,André,M.L.,Caillet,V.,Lacoste,N.,Lausanne,F.&Michaux,S.(2001).Planta,213(2),296-308.
LinktoArticle
ReadAbstract
Theactivityofendo-β-mannanase([1→4]-β-mannanendohydrolaseEC3.2.1.78)islikelytobecentraltothemetabolismofcellwallmannansduringthegerminationofgrainsofcoffee(Coffeaspp.).Inthepresentpaper,wereportthecloningandsequencingoftwoendo-β-mannanaseCDNAs(manAandmanB)bydifferentstrategiesfromCoffeaArabicaL..ThemanAcDNAwasobtainedbytheuseofoligonucleotideshomologoustopublishedsequencesofotherendo-β-mannanasesandmanBbytheuseofoligonucleotidesdeducedfromapurifiedenzymefromcoffee.ManAandBproteinsshareabout56%sequencehomologyandincludehighlyconservedregionsfoundinothermannanendohydrolases.Purificationoftheactivitybychromatographyfollowedbyseparationbytwo-dimensionalelectrophoresisandaminoacidsequencingdemonstratedtheexistenceofatleastsevenisomersoftheManBform.TheexistenceofmultiplemanBgeneswasalsoindicatedbySouthernanalysis,whereasonlyoneortwogenecopiesweredetectedformanA.NorthernhybridizationswithmanA-andmanB-specificprobesshowedthatmRNAtranscriptsforbothcDNAswerepresentatthesameperiodsofbeangerminationwithtranscriptpeaksat20daysafterimbibitionofwater(DAI).Transcriptswerenotdetectedduringgrainmaturationorintheothertissuessuchasroots,stems,flowersandleaves.Thepeakendo-β-mannanaseactivityoccurredatapproximately28DAIandwasnotdetectedingrainspriortoimbibition.ActivityandmRNAlevelsappearedtobetightlyco-ordinated.TestsofsubstratespecificitywiththepurifiedManBenzymeshowedthatactivityrequiredaminimumoffivemannoseunitstofunctionefficiently.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
Cellseparationinkiwifruitwithoutdevelopmentofaspecialiseddetachmentzone.
Prakash,R.,Hallett,I.C.,Wong,S.F.,Johnston,S.L.,O’Donoghue,E.M.,McAtee,P.A.,Seal,A.G.,Atkinson,R.G.&Schröder,R.(2017).BMCPlantBiology,17(1),86.
LinktoArticle
ReadAbstract
Background:Unlikeinabscissionordehiscence,fruitofkiwifruitActinidiaerianthadeveloptheabilityforpeeldetachmentwhentheyareripeandsoftintheabsenceofamorphologicallyidentifiableabscissionzone.Twoclosely-relatedgenotypeswithcontrastingdetachmentbehaviourhavebeenidentified.The‘good-peeling’genotypehasdetachmentwithcleandebondingofcells,andapeeltissuethatdoesnottear.The‘poor-peeling’genotypehaspoordetachability,withcellsthatruptureupondebonding,andpeeltissuethatfragmentseasily.Results:Structuralstudiesindicatedthatpeeldetachabilityinbothgenotypesoccurredintheouterpericarpbeneaththehypodermis.Immunolabellingshoweddifferencesinmethylesterificationofpectin,wheretheinterfaceoflabellingcoincidedwiththelocationofdetachmentinthegood-peelinggenotype,whereasinthepoor-peelinggenotype,nosuchinterfaceexisted.Thiszoneofdifferenceinmethylesterificationwasenhancedbydifferentialcellwallchangesbetweenthepeelandouterpericarptissue.Althoughbothgenotypesexpressedtwopolygalacturonasegenes,noenzymeactivitywasdetectedinthegood-peelinggenotype,suggestinglimitedpectinbreakdown,keepingcellwallsstrongwithouttearingorfragmentationofthepeelandfleshupondetachment.Differencesinlocationandamountsofwall-stiffeninggalactaninthepeelofthegood-peelinggenotypepossIBLycontributedtothisphenotype.Hemicellulose-actingtransglycosylasesweremoreactiveinthegood-peelinggenotype,suggestinganinfluenceonpeelflexibilitybyremodellingtheirsubstratesduringdevelopmentofdetachability.Highxyloglucanaseactivityinthepeelofthegood-peelinggenotypemaycontributebyhavingastrengtheningeffectonthecellulose-xyloglucannetwork.Conclusions:InfruitofA.eriantha, peeldetachabilityisduetotheestablishmentofazoneofdiscontinuitycreatedbydifferentialcellwallchangesinpeelandouterpericarptissuesthatleadtochangesinmechanicalpropertiesofthepeel.Duringripening,thepeelbecomesflexibleandthecellscontinuetoadherestronglytoeachother,preventingbreakage,whereastheunderlyingouterpericarplosescellwallstrengthassofteningproceeds.Togethertheseresultsrevealanovelandinterestingmechanismforenablingcellseparation.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们