Megazyme/偶氮大麦葡聚糖/S-ABG100/100 mL(1%w/v)
商品编号:
S-ABG100
品牌:
Megazyme INC
市场价:
¥3864.00
美元价:
2318.40
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
Highpuritydyed,solubleAzo-BarleyGlucanforthemeasurementofenzymeactivity,forresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Highlypurified,lowviscositybarley1,3:1,4-β-D-glucandyedwithRemazolBrilliantBlueRdye.Recommendedsubstrateforthemeasurementofβ-glucanaseinmaltflour.
Novelapproachestotheautomatedassayofβ-glucanaseandlichenaseactivity.
Mangan,D.,Liadova,A.,Ivory,R.&McCleary,B.V.(2016).CarbohydrateResearch,435,162-172.
LinktoArticle
ReadAbstract
Wereporthereinthedevelopmentofanovelassayprocedureforthemeasurementofβ-glucanaseandlichenase(EC3.2.1.73)incrudeenzymeextracts.Twoassayformatsbasedona)adirectcleavageorb)anenzymecoupledsubstratewereinitiallyinvestigated.The‘directcleavage’substrate,namely4,6-O-benzylidene-2-chloro-4-nitrophenyl-β-31-cellotriosyl-β-glucopyranoside(MBG4),wasfoundtobethemoregenerallyapplicablereagent.Thissubstratewasfullycharacterisedusingacrudemaltβ-glucanaseextract,abacteriallichenase(Bacillussp.)andanon-specificendo-1,3(4)-β-glucanasefromClostridiumThermocellum(EC3.2.1.6).Standardcurveswerederivedthatallowtheassayabsorbanceresponsetobedirectlyconvertedtoβ-glucanase/lichenaseactivityonbarleyβ-glucan.ThespecificityofMBG4wasconfirmedbyanalysingtheactionofcompetingglycosylhydrolasesthataretypicallyfoundinmaltonthesubstrate.Manualandautomatedassayformatsweredevelopedfortheanalysisofa)β-glucanaseinmaltflourandb)lichenaseenzymeextractsandtherepeatABIlityoftheseassayswasfullyinvestigated.
Measurementofmaltbeta-glucanase.
McCleary,B.V.(1986).Proceedingsofthe19thConventionoftheInstituteofBrewing(Aust.andN.Z.section),181-187.
LinktoArticle
ReadAbstract
AProcedurehasbeendevelopedfortheassayofmaltβ-glucanase[a(1→3)(1→4)-β-D-glucanase]whichemploysassubstrate,barleyβ-glucandyedwithRemazolbrilliantBlueandchemicallymodifiedwithcarboxymethylgroupstoincreasesolubility.Thedescribedassayproceduretogetherwithamodifiedextractionformatallowsanalysisofuptotenmaltsamplesinlessthan80min.Also,theprocedureisspecificforenzymesactiveonbarleyβ-glucan,isaccurateandreliable,andcanbereADIlyappliedtotheanalysisofβ-glucanaseinmalt,greenmaltandwort.
Asolublechromogenicsubstratefortheassayof(1→3)(1→4)-β-D-glucanase(lichenase).
McCleary,B.V.(1986).CarbohydratePolymers,6(4),307-318.
LinktoArticle
ReadAbstract
Asimpleprocedurefortheassayof(1→3)(1→4)-β-D-glucanase(lichenase)hasbeendeveloped.Thisassayemploysassubstratebarley(1→3)(1→4)-β-D-glucandyedwithRemazolbrilliantBlueRandchemicallymodifiedwithcarboxymethylgroupstoincreasesolubility.Preparationofthissubstraterequiredthedevelopmentofanimprovedprocedurefortheextractionandpurificationofbarleyβ-glucan.AssaysbasedontheuseofthedescribedchromogenicsubstrateatpH6•5aresensitiveandspecificforenzymesactiveonbarleyβ-glucan.
Problemscausedbybarleybeta-glucansinthebrewingindustry.
McCleary,B.V.(1986).ChemistryinAustralia,53,306-308.
LinktoArticle
ReadAbstract
Brewing,theoldestapplicationofbio-technologyisnowamixoftradeartandmodernscience.Thisarticledescribesnewapplicationsofenzymechemistrytotrouble-shootinginbeerproduction.
Assayofmaltβ-glucanaseusingazo-barleyglucan:animprovedprecipitant.
McCleary,B.V.&Shameer,I.(1987).JournaloftheInstituteofBrewing,93(2),87-90.
LinktoArticle
ReadAbstract
Aprocedurerecentlydescribedfortheassayofmaltβ-glucanase,whichemploysadye-labelledandchemically-modifiedbarleyβ-glucansubstrate,hasbeenimprovedbychangingtheprecipitantsolutionusedtoterminatethereaction.Thenewprecipitantsolutioncontains0•4%(w/v)zincacetateand4%(w/v)sodiumacetatedissolvedin80%(v/v)aqueousmethylcellosolve.Withthisprecipitanttheprocedurecanbedirectlyappliedtotheassayofcellulaseactivity,andwithminormodification,totheassayoflichenaseactivity.
Effectofhighhydrostaticpressure-temperaturecombinationsontheactivityofβ-Glucanasefrombarleymalt.
Buckow,R.,Heinz,V.&Knorr,D.(2005).JournalInstituteBrewing,111(3),282–289.
LinktoArticle
ReadAbstract
β-Glucanasefrombarleymaltisknowntobethermolabilebutimportantinthemashingprocess.Therefore,thepotentialofincreasingthethermostabilityofβ-glucanaseinACESbuffer(0.1M,pH5.6)byhighhydrostaticpressurehasbeeninvestigated.Inactivationoftheenzymeaswellaschangesoftheconversionrateinresponsetocombinedpressure-temperaturetreatmentsintherangeof0.1–900MPaand30–75°Cwereassessedbyanalyzingthekineticrateconstants.Asignificantstabilizationofβ-glucanaseagainsttemperature-inducedinactivationwasdetectedat400MPa.Withincreasingpressureupto600MPathecatalyticactivityofβ-glucanasewasprogressivelydecelerated.However,fortheoveralldepolymerizationreactionofβ-glucansinACESbuffer(0.1M,pH5.6)amaximumwasidentifiedat215MPaand55°Cyieldingapproximately2/3higherdegradationofβ-glucanafter20minascomparedtothemaximumatambientpressure(45°C).
EffectoftheuseofdilutealkalinepriortoBacillussubtilisbasedbiocontrolsteepingandgerminationconditionsonredsorghummaltβ-glucanaseactivitiesandresidualβ-glucans.
BwangangaTawaba,J.C.,Destain,J.,MalumbaKamba,P.,Béra,F.&Thonart,P.(2013).JournalofCerealScience,58(1),148-155.
LinktoArticle
ReadAbstract
Maltingistheidealstagetodealwithβ-glucans.Theirhydrolysisisveryimportantasthediffusionofbothhormonesandhydrolyticenzymesintheendospermofgerminatedgraindependonit.Ahighmaltβ-glucanaseactivityisnotaguaranteeofanextensivehydrolysisofβ-glucans.WhenBacillussubtilisisusedtocontrolmouldgrowth,redsorghummaltβ-glucanaseactivity(measuredusingcarboxymethylcelluloseasthesubstrate)wasimprovedwithoutsignificantlyaffectingthehydrolysisofmaltβ-glucans.Thus,inordertoreducetheresidualβ-glucanscontent,soakingin0.2%NaOHwascombinedwithabiocontrol.Soakingin0.2%NaOHisrecognizedascapableofimprovinggrainhydrationbyopening-uptheendospermcellwalls.Thecombineduseof0.2%NaOHwithB.subtilis-basedbiocontroltreatmentsduringredsorghummalting,leadstomaltwithincreasedβ-glucanaseactivityandasignificantreductionofresidualβ-glucanswhencomparedwiththe16hbiocontrolsteepingwithoutpriorsteepingin0.2%NaOH.β-glucanaseactivityincreaseswithincreasedgerminationtemperatureandtimewhile,conversely,theresidualβ-glucanscontentofthemaltsdecreases.Indeed,whilethelevelofβ-glucanasewasnotvastlydifferentbetweenthemaltsobtainedaftersteepingindistilledwaterandthoseobtainedafter8hsteepingin0.2%NaOHfollowedby8hresteepingindistilledwater(NaOH+H2Otreatment),theirresidualβ-glucanslevelsdiffersignificantly.B.subtilis-basedtreatmentleadstomaltwithimprovedβ-(1-3)-andβ-(1-4)-glucanaseactivitieswithoutsignificantlyimprovedmaltβ-(1-3),(1-4)-glucanaseactivity.Whilemaltsobtainedafter84hgerminationweren"tsignificantlydifferentintermsofmaltβ-(1-3),(1-4)-glucanaseactivitiesforallsteepingtreatments,theuseof0.2%NaOHsteepingpriortoresteepingledtomaltswithimprovedβ-glucanscontent.Combiningthesteepingindilutealkalineandbiocontrolenablestakingadvantageofthedilutealkalineeffectonresidualβ-glucanscontent,dueprobablytotheopening-upofthecellwallsandtheimprovementofwateruptake,andthatofthebiocontrol(improvementofβ-glucanasesynthesis).
Retinol-inducedsecretionofhumanretinol-bindingproteininyeast.
Reppe,S.,Smeland,S.,Moskaugb,J.&Blomhof,R.(1998).FEBSLetters,427(2),213–219.
LinktoArticle
ReadAbstract
Retinol-bindingprotein(RBP)functionsasatransporterforretinol(vitaminA)inplasmainhighereukaryotes.WehavesuccessfullyexpressedhumanRBPinSaccharomycescerevisiae,anditssecretionwasfoundtobeinducedbyretinolalsointhislowereukaryote.Reducedinductionofsecretionbyretinolinatemperature-sensitivesec18-1mutantthatisblockedinsecretionattherestrictedtemperaturesuggeststhatasinmammaliancells,RBPcanbereleasedfromtheendoplasmicreticulumuponadditionofretinol.Thus,themolecularmechanisminvolvedinretinol-dependentsecretionofRBPappearstobeconservedinyeast,andthispointstoyeastasaputativemodelsystemforstudyingretinol-regulatedsecretionofRBP.RBPpurifiedfromyeastwasfoundtobeindistinguishablefromRBPpurifiedfromhumanplasmainseveralfunctionalassays.
Supplementsoftransgenicmaltorgraincontaining(1,3-1,4)-β-glucanaseincreasethenutritivevalueofbarley-basedbroilerdietstothatofmaize.
VonWettstein,D.,Warner,J.&Kannangara,C.G.(2003).BritishPoultryScience,44(3),438-449.
LinktoArticle
ReadAbstract
1.Adietwithadditiontonormalbarleyofmaltfromtransgenicbarleyexpressingaproteinengineered,thermotolerantBacillus(1,3-1,4)-β-glucanaseduringgerminationhaspreviouslybeendemonstratedtoprovideabroilerchickenweightgaincomparabletomaizediets.Italsoreduceddramaticallythenumberofbirdswithadheringstickydroppings,butdidnotentirelyeliminatestickydroppings.Oneoftheobjectivesofthebroilerchickentrialsreportedherewastodetermineifhigherconcentrationsoftransgenicmaltcouldalleviatethestickydroppings.2.Anotheraimwastoinvestigatethefeasibilityofusingmaturetransgenicgraincontainingthethermotolerant(1,3-1,4)-β-glucanaseasfeedadditionandtocomparedietscontainingtransgenicgraintoadietwiththerecommendedamountofacommercialβ-glucanase-basedproduct.3.Inclusionof75or151g/kgtransgenicmaltcontaining4·7or98mg/kgthermotolerant(1,3-1,4)-β-glucanasewith545or469g/kgnon-transgenicbarleyinsteadofmaizeyieldedaweightgaininCornishCrossbroilerchickensindistinguishablefrompresentlyusedmaizediets.Thegeneencodingtheenzymeisexpressedinthealeuronewithabarleyα-amylasegenepromoterandtheenzymeissynthesisedwithasignalpeptideforsecretionintotheendospermofthemaltinggrain.4.Equalweightgainwasachieved,whenthefeedincluded39g/kgtransgenicbarleygrain[containing66mg/kgthermotolerant(1,3-1,4)-β-glucanase]and581g/kgnon-transgenicbarleyinsteadofmaize.Inthiscase,thegeneencodingtheenzymehasbeenexpressedwiththeD-hordeingene(Hor3-1)promoterduringgrainmaturation.Theenzymeissynthesisedasaprecursorwithasignalpeptidefortransportthroughtheendoplasmicreticulumandtargetedintothestoragevacuoles.Depositionoftheenzymeintheprolaminstorageproteinbodiesoftheendospermprotectsitfromdegradationduringtheprogrammedcelldeathoftheendosperminthefinalstagesofgrainmaturationandprovidesextraordinaryheatstability.Thelargeamountofhighlyactive(1,3-1,4)-β-glucanaseinthematuregrainallowedthereductionofthetransgenicgrainingredientto0·2g/kgdiet,thusmakingtheingredientcomparabletothatofthetracemineralsaddedtostandarddiets.5.Adirectcomparisonusingtransgenicgrainsupplementatthelevelof1g/kgoffeedwiththestandardrecommendedadditionofthecommercialenzymepreparationAvizyme1100®at1g/kgyieldedequalweightgain,feedconsumptionandfeedefficiencyinbirdsfedabarley-baseddiet.6.Theproductionofstickydroppingscharacteristicofbroilersfedonbarleydietswasavoidedwithall9experimentaldietsandreducedtothelevelobservedwithastandardmaizedietbysupplementationWithtransgenicbarley.7.Theexcellentgrowthandnormalsurvivalofthe400broilerstestedonbarleydietssupplementedwithtransgenicgrainormaltshowedthegrainandmaltnottobetoxic.8.Thebarleyfeedwithaddedtransgenicgrainormaltcontainingthermotolerant(1,3-1,4)-β-glucanaseprovidesanenvironmentallyfriendlyalternativetoenzymeadditives,asitusesphotosyntheticenergyforproductionoftheenzymeinthegrainandthusavoidsuseofnon-renewableenergyforfermentation.Thedepositionoftheenzymeintheproteinbodiesofthegraininthefieldmakescoatingproceduresforstabilisationofenzymeactivitysuperfluous.9.Barleyfeedwiththesmallamountoftransgenicgrainasadditivetonormalbarleyprovidesanalternativeforbroilerfeedinareaswheregrainmaizecannotbegrownforclimaticreasonsorbecauseofunsuitablesoilandthushastobeimported.
Assessmentofenzymaticendospermmodificationofmaltingbarleyusingindividualgrainanalyses.
DeSá,R.M.&Palmer,G.H.(2004).JournaloftheInstituteofBrewing,110(1),43-50.
LinktoArticle
ReadAbstract
Enzymaticmodificationoftheendospermofmaltingbarleyisamainfeatureofthemaltingprocess.Unevenenzymaticmodificationoftheendosperm(heterogeneity)cancausebrewhouseproblems.Althoughthereisageneralcorrelationbetweenendospermmodification,beta-glucanbreakdownandendo-beta-glucanasedevelopment,itisbasedonaverageresultsfromsampleanalysesandmayconcealheterogeneity.Theprimaryaimofthisworkwastouseindividualgrainanalysestoinvestigatefactorsthatcontrolendospermmodificationandbeta-glucanbreakdown.Intermsofbeta-glucanbreakdownandphysicalmodification,thebarleyvarietyChariotmaltedfasterthanDecanter.However,bothvarietiesshowedsimilardistributionofendo-beta-glucanaseinindividualgrainsduringmalting.Furtherworkonindividualgrainsshowedthatthecorrelationbetweenbeta-glucanbreakdownandendo-beta-glucanaseactivitywasnotsignificant.Surprisinglybeta-glucanbreakdowndidnotalwayscorrelatewiththephysicalmodificationoftheendosperm.Boththesefindingssuggestthatsampleanalysesofbeta-glucanlevelsandmaltbeta-glucanaseactivitiesarenotreliableindicatorsofthedegreesofwhichmaltsamplesaremodifiedduringmalting.Sincethedistributionofbeta-glucaninindividualgrainsoftheunmaltedbarleyvarietieswassimilar,thetotalbeta-glucanlevelsoftheoriginalbarleydidnotdeterminetherateatwhichbeta-glucanwasbroken-downduringmalting.Althoughproteinstudiesareatapreliminarystage,therateofproteinbreakdownwasnotcorrelatedwiththerateatwhichbeta-glucanwasbrokendowninthemaltinggrain.ItispossIBLethatthephysico-chemicalpropertiesofendospermstorageproteinsmaylimittherateofbeta-glucanbreakdownduringmalting.
CellobiohydrolaseB,asecondexo-cellobiohydrolasefromthecellulolyticbacteriumCellulomonasfimi.
Shen,H.,Gilkes,N.R.,Kilburn,D.G.,MillerJr,R.C.&Warren,R.A.(1995).BiochemicalJournal,311,67-74.
LinktoArticle
ReadAbstract
ThegenecbhBfromthecellulolyticbacteriumCellulomonasfimiencodesapolypeptideof1090aminoacids.CellobiohydrolaseB(CbhB)is1037aminoacidslong,withacalculatedmolecularmassof109765Da.Theenzymecomprisesfivedomains:anN-terminalcatalyticdomainof643aminoacids,threefibronectintypeIIIrepeatsof97aminoacidseach,andaC-terminalcellulose-bindingdomainof104aminoacids.Thecatalyticdomainbelongstofamily48ofglycosylhydrolases.CbhBhasaverylowactivityonCM-cellulose.ViscometricanalysisofCM-cellulosehydrolysisindicatesthattheenzymeisanexoglucanase.Cellobioseisthemajorproductofhydrolysisofcellulose.IncommonwithtwootherexoglycanasesfromC.fimi,CbhBhaslowbutdetectableendoglucanaseactivity.CbhBisthesecondexo-cellobiohydrolasefoundinC.fimi.Therefore,thecellulasesystemofC.fimiresemblesthoseoffungiincomprisingmultipleendoglucanasesandcellobiohydrolases.
Productionofathermostable1,3-1,4-β-glucanasemutantinBacillussubtilisWB600atahighfermentationcapacityanditspotentialapplicationinthebrewingindustry.
Niu,C.,Liu,C.,Li,Y.,Zheng,F.,Wang,J.&Li,Q.(2017).InternationalJournalofBIOLOGicalMacromolecules,InPress.
LinktoArticle
ReadAbstract
1,3-1,4-β-glucanasewasanimportantbiotechnologicalaidinthebrewingindustry.Inapreviousresearch,aBacillusBglTOmutant(BglTO)withhightolerancetowardshightemperatureandlow-pHconditionswasconstructedandexpressedinEscherichiacoli.However,E.coliwasnotasuitablehostforenzymeproductioninfoodindustry.Therefore,thepresentworkaimedtoachievethehigh-levelexpressionofBglTOinBacillussubtilisWB600andtotestitseffectinCongressmashing.Theβ-glucanasemutantwassuccessfullyexpressedinB.subtilisWB600andfavorableplasmidsegregationandstructuralstabilitywereobserved.Themaximalextracellularactivityofβ-glucanaseinrecombinantB.subtilisWB600reached4840.4UmL−1aftercultivationconditionoptimization,whichwas1.94-foldhigherthanthatbeforeoptimization.ThefermentationcapacityofrecombinantB.subtilisreached242.02UmL−1h−1,whichwasthehighestamongallreportedβ-glucanases.TheadditionofBglTOinCongressmashingsignificantlyreducedthefiltrationtimeandviscosityofmashby29.7%and12.3%,respectively,whichwassuperiortotwocommercialenzymes.ThesefavorablepropertiesindicatedthatB.subtilisWB600wasasuitablehostforproductionofBglTO,whichwaspromisingforapplicationinthebrewingindustry.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们