Megazyme/偶氮小麦阿拉伯木聚糖(粉末)/S-AWAXP/3克
商品编号:
S-AWAXP
品牌:
Megazyme INC
市场价:
¥4896.00
美元价:
2937.60
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
Highpuritydyed,solubleAzo-WheatArABInoxylanforthemeasurementofenzymeactivity,forresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
PreparedbydyeingwheatflourarabinoxylanwithRemazolBrilliantBlueRdye.Substratefortheassayofendo-1,4-β-D-xylanase.
Novelsubstratesfortheautomatedandmanualassayofendo-1,4-β-xylanase.
Mangan,D.,Cornaggia,C.,Liadova,A.,McCormack,N.,Ivory,R.,McKie,V.A.,Ormerod,A.&McCleary,D.V.(2017).CarbohydrateResearch,445,14-22.
LinktoArticle
ReadAbstract
endo-1,4-β-Xylanase(EC3.2.1.8)isemployedacrossabroadrangeofindustriesincludinganimalfeed,brewing,baking,biofuels,detergentsandpulp(paper).Despiteitsimportance,arapid,reliable,reproducIBLe,automatableassayforthisenzymethatisbasedontheuseofachemicallydefinedsubstratehasnotbeendescribedtodate.Reportedhereinisanewenzymecoupledassayprocedure,termedtheXylX6assay,thatemploysanovelsubstrate,namely4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-45-O-glucosyl-xylopentaoside.ThedevelopmentofthesubstrateandassociatedassayisdiscussedhereandtherelationshipbetweentheactivityvaluesobtainedwiththeXylX6assayversustrADItionalreducingsugarassaysanditsspecificityandreproducibilitywerethoroughlyinvestigated.
EvidencefortemporalregulationofthetwoPseudomonascellulosaxylanasesbelongingtoglycosidehydrolasefamily11.
Emami,K.,Nagy,T.,Fontes,C.M.G.A.,Ferreira,L.M.A.&Gilbert,H.J.(2002).JournalofBacteriology,184(15),4124-4133.
LinktoArticle
ReadAbstract
Pseudomonascellulosaisahighlyefficientxylan-degradingbacterium.Genesencodingfivexylanases,andseveralaccessoryenzymes,whichremovethevarioussidechainsthatdecoratethexylanbackbone,havebeenisolatedfromthepseudomonadandcharacterized.Thexylanasegenesconsistofxyn10A,xyn10B,xyn10C,xyn10D,andxyn11A,whichencodeXyn10A,Xyn10B,Xyn10C,Xyn10D,andXyn11A,respectively.Inthisstudyasixthxylanasegene,xyn11B,wasisolatedwhichencodesa357-residuemodularenzyme,designatedXyn11B,comprisingaglycosidehydrolasefamily11catalyticdomainappendedtoaC-terminalX-14module,ahomologueofwhichbindstoxylan.Localizationstudiesshowedthatthetwoxylanaseswithglycosidehydrolasefamily(GH)11catalyticmodules,Xyn11AandXyn11B,aresecretedintotheculturemedium,whereasXyn10Cismembranebound.xyn10C,xyn10D,xyn11A,andxyn11Bwereallabundantlyexpressedwhenthebacteriumwasculturedonxylanorβ-glucanbutnotonmediumcontainingmannan,whereasglucoserepressedtranscriptionofthesegenes.Althoughallofthexylanasegeneswereinducedbythesamepolysaccharides,temporalregulationofxyn11Aandxyn11Bwasapparentonxylan-containingmedia.Transcriptionofxyn11Aoccurredearlierthantranscriptionofxyn11B,whichisconsistentwiththepredictedmodeofactionoftheencodedenzymes.Xyn11A,butnotXyn11B,exhibitsxylanesteraseactivity,andtheremovalofacetatesidechainsisrequiredforxylanasestohydrolyzethexylanbackbone.AtransposonmutantofP.cellulosainwhichxyn11Aandxyn11Bwereinactivedisplayedgreatlyreducedextracellularbutnormalcell-associatedxylanaseactivity,anditsgrowthrateonmediumcontainingxylanwasindistinguishablefromwild-typeP.cellulosa.Basedonthedatapresentedhere,weproposeamodelforxylandegradationbyP.cellulosainwhichtheGH11enzymesconvertdecoratedxylansintosubstitutedxylooligosaccharides,whicharethenhydrolyzedtotheirconstituentsugarsbythecombinedactionofcell-associatedGH10xylanasesandsidechain-cleavingenzymes.
SecondarysubstratebindingstronglyaffectsactivityandbindingaffinityofBacillussubtilisandAspergillusnigerGH11xylanases.
Cuyvers,S.,Dornez,E.,Rezaei,M.N.,Pollet,A.,Delcour,J.A.&Courtin,C.M.(2011).FEBSJournal,278(7),1098–1111.
LinktoArticle
ReadAbstract
Thesecondarysubstratebindingsite(SBS)ofBacillussubtilisandAspergillusnigerglycosidehydrolasefamily11xylanaseswasstudiedbysite-directedmutagenesisandevaluationofactivityandbindingpropertiesofmutantenzymesondifferentsubstrates.ModificationoftheSBSresultedinanuptothree-folddecreaseintherelativeactivityoftheenzymesonpolymericversusoligomericsubstratesandhighlightedtheimportanceofseveralaminoacidsintheSBSforminghydrogenbondsorhydrophobicstackinginteractionswithsubstrates.WeakeningoftheSBSincreasedKdvaluesbyupto70-foldinbindingaffinitytestsusingnaturalsubstrates.TheimpactthatmodificationsintheSBShavebothonactivityandonbindingaffinitytowardspolymericsubstratesclearlyshowsthatsuchstructuralelementscanincreasetheefficiencyofthesesingledomainenzymesontheirnaturalsubstrates.
Comparisonofprebioticeffectsofarabinoxylanoligosaccharidesandinulininasimulatorofthehumanintestinalmicrobialecosystem.
Grootaert,C.,VandenAbbeele,P.,Marzorati,M.,Broekaert,W.F.,Courtin,C.M.,Delcour,J.A.,Verstraete,W.&VandeWiele,T.(2009).FEMSMicroBIOLOGyEcology,69(2),231–242.
LinktoArticle
ReadAbstract
Inthisstudy,theprebioticpotentialofarabinoxylanoligosaccharides(AXOS)wascomparedwithinulinintwosimulatorsofthehumanintestinalmicrobialecosystem.Microbialbreakdownofbotholigosaccharidesandshort-chainfattyacidproductionwascoloncompartmentspecific,withascendingandtransversecolonbeingthepredominantsiteofinulinandAXOSdegradation,respectively.Lactatelevels(+5.5mM)increasedintheascendingcolonduringAXOSsupplementation,whilepropionatelevels(+5.1mM)increasedinthetransversecolon.Theconcomitantdecreaseinlactateinthetransversecolonsuggeststhatpropionatewaspartiallyformedovertheacrylatepathway.FurThermore,AXOSsupplementationstronglydecreasedbutyrateintheascendingcolon,thisinparallelwithadecreaseinRoseburiaspp.andBacteroides/Prevotella/Porphyromonas(−1.4and−2.0logCFU)levels.Inulintreatmenthadmoderateeffectsonlactate,propionateandbutyratelevels.Denaturinggradientgelelectrophoresisanalysisrevealedthatinulinchangedmicrobialmetabolismbymodulatingthemicrobialcommunitycomposition.Incontrast,AXOSprimarilyaffectedmicrobialmetabolismby‘switchingon’AXOS-degradingenzymes(xylanase,arabinofuranosidaseandxylosidase),withoutsignificantlyaffectingmicrobialcommunitycomposition.OurresultsdemonstratethatAXOShasahigherpotencythaninulintoshiftpartofthesugarfermentationtowardthedistalcolonparts.Furthermore,duetoitsstrongerpropionate-stimulatingeffect,AXOSisacandidateprebioticcapableofloweringcholesterolandbeneficiallyaffectingfatmetabolismofthehost.
Arabinoxylan‐oligosaccharides(AXOS)affecttheprotein/carbohydratefermentationbalanceandmicrobialpopulationdynamicsofthesimulatorofhumanintestinalmicrobialecosystem.
Sanchez,J.I.,Marzorati,M.,Grootaert,C.,Baran,M.,VanCraeyveld,V.,Courtin,C.M.,Broekaet,W.F.Declour,J.A.,Verstraete,W.&VandeWiele,T.(2009).MicrobialBiotechnology,2(1),101-113.
LinktoArticle
ReadAbstract
Arabinoxylan‐oligosaccharides(AXOS)arearecentlynewlydiscoveredclassofcandidateprebioticsas–dependingontheirstructure–theyarefermentedindifferentregionsofgastrointestinaltract.Thiscanhaveanimpactontheprotein/carbohydratefermentationbalanceinthelargeintestineand,thus,affectthegenerationofpotentiallytoxicmetabolitesinthecolonoriginatingfromproteolyticactivity.Inthisstudy,wescreeneddifferentAXOSpreparationsfortheirimpactontheinvitrointestinalfermentationactivityandmicrobialcommunitystructure.Short‐termfermentationexperimentswithAXOSwithanaveragedegreeofpolymerization(avDP)of29allowedpartoftheoligosaccharidestoreachthedistalcolon,anddecreasedtheconcentrationofproteolyticMarkers,whereasAXOSwithloweravDPwereprimarilyfermentedintheproximalcolon.Additionally,prolongedsupplementationofAXOSwithavDP29totheSimulatorofHumanIntestinalMicrobialEcosystem(SHIME)reactordecreasedlevelsofthetoxicproteolyticmarkersphenolandp‐cresolinthetwodistalcoloncompartmentsandincreasedconcentrationsofbeneficialshort‐chainfattyacids(SCFA)inallcolonvessels(25–48%).Denaturantgradientgelelectrophoresis(DGGE)analysisindicatedthatAXOSsupplementationonlyslightlymodifiedthetotalmicrobialcommunity,implyingthattheobservedeffectsonfermentationmarkersaremainlycausedbychangesinfermentationactivity.Finally,specificquantitativePCR(qPCR)analysisshowedthatAXOSsupplementationsignificantlyincreasedtheamountofhealth‐promotinglactobacilliaswellasofBacteroides–PrevotellaandClostridiumcoccoides–Eubacteriumrectalegroups.ThesedataallowconcludingthatAXOSarepromisingcandidatestomodulatethemicrobialmetabolisminthedistalcolon.
Microbialcommunitydevelopmentinadynamicgutmodelisreproducible,colonregionspecific,andselectiveforbacteroidetesandclostridiumclusterIX.
VandenAbbeele,P.,Grootaert,C.,Marzorati,M.,Possemiers,S.,Verstraete,W.,Gérard,P.,Rabot,S.,Bruneau,A.,ElAidy,S.,Derrien,M.,Zoetendal,E.,Kleerebezem,M.,Smidt,H.&VandeWiele,T.(2010).AppliedandEnvironmentalMicrobiology,76(15),5237-5246.
LinktoArticle
ReadAbstract
Dynamic,multicompartmentinvitrogastrointestinalsimulatorsareoftenusedtomonitorgutmicrobialdynamicsandactivity.Thesereactorsneedtoharboramicrobialcommunitythatisstableuponinoculation,colonregionspecific,andrelevanttoinvivoconditions.Togetherwiththereproducibilityofthecolonizationprocess,thesecriteriaareoftenoverlookedwhenthemodulatorypropertiesfromdifferenttreatmentsarecompared.Wethereforeinvestigatedthemicrobialcolonizationprocessintwoidenticalsimulatorsofthehumanintestinalmicrobialecosystem(SHIME),simultaneouslyinoculatedwiththesamehumanfecalmicrobiotawithahigh-resolutionphylogeneticmicroarray:thehumanintestinaltractchip(HITChip).Followinginoculationoftheinvitrocoloncompartments,microbialcommunitycompositionreachedsteadystateafter2weeks,whereas3weekswererequiredtoreachfunctionalstability.ThisdynamiccolonizationprocesswasreproducibleinbothSHIMEunitsandresultedinhighlydiversemicrobialcommunitieswhichwerecolonregionspecific,withtheproximalregionsharboringsaccharolyticmicrobes(e.g.,Bacteroidesspp.andEubacteriumspp.)andthedistalregionsharboringmucin-degradingmicrobes(e.g.,Akkermansiaspp.).Importantly,theshiftfromaninvivotoaninvitroenvironmentresultedinanincreasedBacteroidetes/Firmicutesratio,whereasClostridiumclusterIX(propionateproducers)wasenrichedcomparedtoclustersIVandXIVa(butyrateproducers).Thiswassupportedbyproportionallyhigherinvitropropionateconcentrations.Inconclusion,high-resolutionanalysisofinvitro-culturedgutmicrobiotaoffersnewinsightonthemicrobialcolonizationprocessandindicatestheimportanceofdigestiveparametersthatmaybecrucialinthedevelopmentofnewinvitromodels.
GlycosideHydrolasesfromatargetedCompostMetagenome,activity-screeningandfunctionalcharacterization.
Dougherty,M.J.,D’haeseleerP.,Hazen,T.C.,Simmons,B.A.,Adams,P.D.&Hadi,M.Z.(2012).BMCBiotechnology,12,38.
LinktoArticle
ReadAbstract
Background:Metagenomicsapproachesprovideaccesstoenvironmentalgeneticdiversityforbiotechnologyapplications,enablingthediscoveryofnewenzymesandpathwaysfornumerouscatalyticprocesses.Discoveryofnewglycosidehydrolaseswithimprovedbiocatalyticpropertiesfortheefficientconversionoflignocellulosicmaterialtobiofuelsisacriticalchallengeinthedevelopmentofeconomicallyviableroutesfrombiomasstofuelsandchemicals.Results:Twenty-twoputativeORFs(openreadingframes)wereidentifiedfromaswitchgrass-adaptedcompostcommunitybasedonsequencehomologytorelatedgenefamilies.TheseORFswereexpressedinE.coliandassayedforpredictedactivities.SevenoftheORFsweredemonstratedtoencodeactiveenzymes,encompassingfiveclassesofhemicellulases.Fourenzymeswereoverexpressedinvivo,purifiedtohomogeneityandsubjectedtodetailedbiochemicalcharacterization.TheirpHoptimarangedbetween5.5-7.5andtheyexhibitmoderatethermostabilityupto~60-70°C.Conclusions:SevenactiveenzymeswereidentifiedfromthissetofORFscomprisingfivedifferenthemicelluloseactivities.Theseenzymeshavebeenshowntohaveusefulproperties,suchasmoderatethermalstabilityandbroadpHoptima,andmayserveasthestartingpointsforfutureproteinengineeringtowardsthegoalofdevelopingefficientenzymecocktailsforbiomassdegradationunderdiverseprocessconditions.
HemicellulaseproductioninChrysosporiumlucknowenseC1.
Hinz,S.W.A.,Pouvreau,L.,Joosten,R.,Bartels,J.,Jonathan,M.C.,Wery,J.&Schols,H.A.(2009).JournalofCerealScience,50(3),318-323.
LinktoArticle
ReadAbstract
Filamentousfungiarewidelyusedforenzymeproductionforthebiofuelindustry.TheascomycetousfungusChrysosporiumlucknowenseC1wasisolatedasanaturalproducerofneutralcellulases.ItisatpresentanattractivealternativetowellknownfungilikeAspergillussp.andTrichodermareeseiforproteinproductiononacommercialscale.Besidesmanycellulases,alargenumberofhemicellulases(particularlyxylanasesandarabinofuranosidases)andesterases(acetylxylanesterasesandferulicacidesterases)encodinggeneshavealsobeenidentifiedintheC1genome.ManyoftheseextracellularenzymeshavebeenselectivelyexpressedinC1andthenpurifiedandcharacterized.Fourarabinofuranosidases,twoacetylxylanesterases,twoferulicacidesterases,anα-glucuronidaseandfourxylanaseshavebeenpurifiedandcharacterized.Alltheseenzymeswerefoundtobeactivetowardsarabinoxylans,demonstratingthehighpotentialofC1asaproducerofhemicellulolyticenzymes.
Impactofcellwall‐degradingenzymesonwater‐holdingcapacityandsolubilityofdietaryfibreinryeandwheatbran.
Petersson,K.,Nordlund,E.,Tornberg,E.,Eliasson,A.C.,&Buchert,J.(2013).JournaloftheScienceofFoodandAgriculture,93(4),882-889.
LinktoArticle
ReadAbstract
BACKGROUND:Ryeandwheatbranweretreatedwithseveralxylanasesandendoglucanases,andtheeffectsonphysicochemicalpropertiessuchassolubility,viscosity,water-holdingcapacityandparticlesizeaswellasthechemicalcompositionofthesolubleandinsolublefractionsofthebranwerestudied.Alargenumberofenzymeswithwell-definedactivitieswereused.Thisenabledacomparisonbetweenenzymesofdifferentoriginsandwithdifferentactivitiesaswellasacomparisonbetweentheeffectsoftheenzymesonryeandwheatbran.RESULTS:ThexylanasesderivedfromBacillussubtiliswerethemosteffectiveinsolubilisingdietaryfibrefromwheatandryebran.Therewasatendencyforahigherdegreeofdegradationofthesolubleorsolubiliseddietaryfibreinryebranthaninwheatbranwhentreatedwithmostoftheenzymes.CONCLUSION:Noneoftheenzymesincreasedthewater-holdingcapacityofthebranortheviscosityoftheaqueousphase.Thecontentofinsolublematerialdecreasedasthedietaryfibrewassolubilisedbytheenzymes.Theamountofmaterialthatmayformanetworktoretainwaterinthesystemwastherebydecreased.
RoleofN-linkedglycosylationintheenzymaticpropertiesofathermophilicGH10xylanasefromAspergillusfumigatusexpressedinPichiapastoris.
Chang,X.,Xu,B.,Bai,Y.,Luo,H.,Ma,R.,Shi,P.&Yao,B.(2017).PloSOne,12(2),e0171111.
LinktoArticle
ReadAbstract
N-Glycosylationisaposttranslationalmodificationcommonlyoccurredinfungiandplaysrolesinavarietyofenzymefunctions.Inthisstudy,axylanase(Af-XYNA)ofglycosidehydrolase(GH)family10fromAspergillusfumigatusharboringthreepotentialN-glycosylationsites(N87,N124andN335)washeterologouslyproducedinPichiapastoris.TheN-glycosylatedAf-XYNA(WT)exhibitedfavorabletemperatureandpHoptima(75°CandpH5.0)andgoodthermostability(maintainingstableat60°C).TorevealtheroleofN-glycosylationonAf-XYNA,theenzymewasdeglycosylatedbyendo-β-N-acetylglucosaminidaseH(DE)ormodifiedbysite-directedmutagenesisatN124(N124T).ThedeglycosylatedDEandmutantN124TshowednarrowerpHadaptationrange,lowerspecificactivity,andworsepHandthermalstability.FurtherthermodynamicanalysisrevealedthattheenzymewithhigherN-glycosylationdegreewasmorethermostable.Thisstudydemonstratedthattheeffectsofglycosylationatdifferentdegreesandsiteswerediverse,inwhichtheglycanlinkedtoN124playedakeyroleinpHandthermalstabilityofAf-XYNA.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们