Megazyme/偶氮木聚糖(桦木)(液体)/S-AXBL/2 x 100 mL(1%w/v)
商品编号:
S-AXBL
品牌:
Megazyme INC
市场价:
¥3864.00
美元价:
2318.40
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
Highpuritydyed,solubleAzo-Xylan(Birchwood)forthemeasurementofenzymeactivity,forresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Substrateforthespecificassayofendo-1,4-β-D-xylanase.
Novelsubstratesfortheautomatedandmanualassayofendo-1,4-β-xylanase.
Mangan,D.,Cornaggia,C.,Liadova,A.,McCormack,N.,Ivory,R.,McKie,V.A.,Ormerod,A.&McCleary,D.V.(2017).CarbohydrateResearch,445,14-22.
LinktoArticle
ReadAbstract
endo-1,4-β-Xylanase(EC3.2.1.8)isemployedacrossabroadrangeofindustriesincludinganimalfeed,brewing,baking,biofuels,detergentsandpulp(paper).Despiteitsimportance,arapid,reliable,reproducIBLe,automatableassayforthisenzymethatisbasedontheuseofachemicallydefinedsubstratehasnotbeendescribedtodate.Reportedhereinisanewenzymecoupledassayprocedure,termedtheXylX6assay,thatemploysanovelsubstrate,namely4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-45-O-glucosyl-xylopentaoside.ThedevelopmentofthesubstrateandassociatedassayisdiscussedhereandtherelationshipbetweentheactivityvaluesobtainedwiththeXylX6assayversustrADItionalreducingsugarassaysanditsspecificityandreproducibilitywerethoroughlyinvestigated.
EngineeringhyperThermostABIlityintoaGH11xylanaseismediatedbysubtlechangestoproteinstructure.
Dumon,C.,Varvak,A.,Wall,M.A.,Flint,J.E.,Lewis,R.J.,Lakey,J.H.,Morland,C.,Luginbühl,P.,Healey,S.,Todaro,T.,DeSantis,G.,Sun,M.,Parra-Gessert,L.,Tan,X.,Weiner,D.P.&Gilbert,H.J.(2008).JournalofBIOLOGicalChemistry,283(33),22557-22564.
LinktoArticle
ReadAbstract
Understandingthestructuralbasisforproteinthermostabilityisofconsiderablebiologicalandbiotechnologicalimportanceasexemplifiedbytheindustrialuseofxylanasesatelevatedtemperaturesinthepaperpulpandanimalfeedsectors.HerewehaveuseddirectedproteinevolutiontogeneratehyperthermostablevariantsofathermophilicGH11xylanase,EvXyn11.TheGeneSiteSaturationMutagenesisTM(GSSM)methodologyemployedassessestheinfluenceonthermostabilityofallpossibleaminoacidsubstitutionsateachpositionintheprimarystructureofthetargetprotein.The15mostthermostablemutants,whichgenerallyclusteredintheN-terminalregionoftheenzyme,hadmeltingtemperatures(Tm)1–8°Chigherthantheparentprotein.Screeningofacombinatoriallibraryofthesinglemutantsidentifiedahyperthermostablevariant,EvXyn11TS,containingsevenmutations.EvXyn11TShadaTm~25°ChigherthantheparentenzymewhiledisplayingcatalyticpropertiesthatweresimilartoEvXyn11.ThecrystalstructuresofEvXyn11andEvXyn11TSrevealedanabsenceofsubstantialchangestoidentifiableintramolecularinteractions.TheonlyexplicablemutationsareT13F,whichincreaseshydrophobicinteractions,andS9Pthatapparentlylockstheconformationofasurfaceloop.Thisreportshowsthatthemolecularbasisfortheincreasedthermostabilityisextraordinarilysubtleandpointstotherequirementfornewtoolstointerrogateproteinfoldingatnon-ambienttemperatures.
FunctionalcharacterizationofaxylosetransporterinAspergillusnidulans.
Colabardini,A.C.,Ries,L.N.A.,Brown,N.A.,dosReis,T.F.,Savoldi,M.,Goldman,M.H.S.,Menino,J.F.,Rodrigues,F.&Goldman,G.H.(2014).BiotechnologyforBiofuels,7(1),46.
LinktoArticle
ReadAbstract
Background:Theproductionofbioethanolfromlignocellulosicfeedstockswillonlybecomeeconomicallyfeasiblewhenthemajorityofcellulosicandhemicellulosicbiopolymerscanbeefficientlyconvertedintobioethanol.Themaincomponentofcelluloseisglucose,whereashemicellulosesmainlyconsistofpentosesugarssuchasD-xyloseandL-arabinose.ThegenomesoffilamentousfungisuchasA.nidulansencodeamultiplicityofsugartransporterswithbroadaffinitiesforhexoseandpentosesugars.Saccharomycescerevisiae,whichhasalonghistoryofuseinindustrialfermentationprocesses,isnotabletoefficientlytransportormetabolizepentosesugars(e.g.xylose).Subsequently,theaimofthisstudywastoidentifyxylose-transportersfromA.nidulans,aspotentialcandidatesforintroductionintoS.cerevisiaeinordertoimprovexyloseutilization.Results:Inthisstudy,weidentifiedtheA.nidulansxtrD(xylosetransporter)gene,whichencodesaMajorFacilitatorSuperfamily(MFS)transporter,andwhichwasspecificallyinducedatthetranscriptionallevelbyxyloseinaXlnR-dependentmanner,whilebeingpartiallyrepressedbyglucoseinaCreA-dependentmanner.WeevaluatedtheabilityofxtrDtofunctionallycomplementtheS.cerevisiaeEBY.VW4000strainwhichisunabletogrowonglucose,fructose,mannoseorgalactoseassinglecarbonsource.InS.cerevisiae,XtrDwastargetedtotheplasmamembraneanditsexpressionwasabletorestoregrowthonxylose,glucose,galactose,andmannoseassinglecarbonsources,indicatingthatthistransporteracceptsmultiplesugarsasasubstrate.XtrDhasahighaffinityforxylose,andmaybeahighaffinityxylosetransporter.WewereabletoselectaS.cerevisiaemutantstrainthathadincreasedxylosetransportwhenexpressingthextrDgene.Conclusions:ThisstudycharacterizedtheregulationandsubstratespecificityofanA.nidulanstransporterthatrepresentsagoodcandidateforfurtherdirectedmutagenesis.InvestigationintotheareaofsugartransportinfungipresentsacrucialstepforimprovingtheS.cerevisiaexylosemetabolism.Moreover,wehavedemonstratedthattheintroductionofadaptivemutationsbeyondtheintroducedxyloseutilizationgenesisabletoimproveS.cerevisiaexylosemetabolism.
Anevolutionaryroutetoxylanaseprocessfitness.
Palackal,N.,Brennan,Y.,Callen,W.N,Dupree,P.,Frey,G.,Goubet,F.,Hazlewood,G.,P.,Healey,S.,Kang,Y.E.,Kretz,K.A.,Lee,E.,Xuqiu,T.,Tomlinson,G.L.,Verruto,J.,Wong,V.W.K.,Mathur,E.J.,Short,J.M.,Robertson,D.E.&Steer,B.A.(2004).ProteinScience,13(2),494–503.
LinktoArticle
ReadAbstract
Directedevolutiontechnologieswereusedtoselectivelyimprovethestabilityofanenzymewithoutcompromisingitscatalyticactivity.Inparticular,thisarticledescribesthetandemuseoftwoevolutionstrategiestoevolveaxylanase,renderingittoleranttotemperaturesinexcessof90°C.Alibraryofallpossible19aminoacidsubstitutionsateachresiduepositionwasgeneratedandscreenedforactivityafteratemperaturechallenge.Ninesingleaminoacidresiduechangeswereidentifiedthatenhancedthermostability.All512possiblecombinatorialvariantsoftheninemutationswerethengeneratedandscreenedforimprovedthermaltoleranceunderstringentconditions.Thescreenyieldedelevenvariantswithsubstantiallyimprovedthermaltolerance.Denaturationtemperaturetransitionmidpointswereincreasedfrom61°Ctoashighas96°C.Theuseoftwoevolutionstrategiesincombinationenabledtherapiddiscoveryoftheenzymevariantwiththehighestdegreeoffitness(greaterthermaltoleranceandactivityrelativetothewild-typeparent).
MolecularcloningandexpressioninSaccharomycescerevisiaeoftwoAspergillusnidulansxylanasegenes.
Pe´rez-Gonzales´Lez,J.A.,DeGraaff,L.H.,Visser,J.&Ramon,D.(1996).AppliedandEnvironmentalMicrobiology,62(6),2179-2182.
LinktoArticle
ReadAbstract
TwoAspergillusnidulansgenes,xlnAandxlnB,encodingtheX22andX24xylanasesfromthisfungus,respectively,havebeenclonedandsequenced.TheirCDNAshavebeenexpressedinalaboratorySaccharomycescerevisiaestrainunderthecontrolofaconstitutiveyeastpromoter,resultingintheconstructionofrecombinantxylanolyticyeaststrains.
Generationofdoubledhaploidtransgenicwheatlinesbymicrosporetransformation.
Brew-Appiah,R.A.T.,Ankrah,N.,Liu,W.,Konzak,C.F.,Wettstein,D.V.&Rustgi,S.(2013).PLoSOne,8(11),e80155.
LinktoArticle
ReadAbstract
Microsporescanbeinducedtodevelophomozygousdoubledhaploidplantsinasinglegeneration.Inthepresentexperimentsandrogenicmicrosporesofwheathavebeengeneticallytransformedanddevelopedintomaturehomozygoustransgenicplants.Twodifferenttransformationtechniqueswereinvestigated,oneemployingelectroporationandtheotherco-cultivationwithAgrobacteriumtumefaciens.Differenttissuecultureandtransfectionconditionsweretestedonninedifferentwheatcultivarsusingfourdifferentconstructs.Atotalof19fertiletransformantsinfivegenotypesfromfourmarketclassesofcommonwheatwererecoveredbythetwoprocedures.PCRfollowedbyDNAsequencingoftheproducts,Southernblotanalysesandbio/histo-chemicalandhistologicalassaysoftherecombinantenzymesconfirmedthepresenceofthetransgenesintheTotransformantsandtheirstableinheritanceinhomozygousT1:2doubledhaploidProgenies.Severaldecisivefactorsdeterminingthetransformationandregenerationefficiencywiththetwoproceduresweredetermined:(i)pretreatmentofimmaturespikeswithCuSO4solution(500mg/L)at4°Cfor10days;(ii)electroporationofplasmidDNAinenlargedmicrosporesbyasinglepulseof~375V;(iii)inductionofmicrosporesaftertransfectionat28°CinNPB-99mediumandregenerationat26°CinMMS5medium;(iv)co-cultivationwithAgrobacteriumAGL-1cellsfortransferofplasmidT-DNAintomicrosporesatday0for<24 hours;="" and="" (v)="" elimination="" of="" agl-1="" cells="" after="" co-cultivation="" with="" timentin="" (200–400="" mg/l).="">24>
Initialdecayofwoodyfragmentsinsoilisinfluencedbysize,verticalposition,nitrogenavailabilityandsoilorigin.
VanderWal,A.,DeBoer,W.,Smant,W.&VanVeen,J.A.(2007).PlantSoil,301,189–201.
LinktoArticle
ReadAbstract
Fast-growingbacteriaandfungiareexpectedtocausetheinitialstageofdecompositionofwoodyfragmentsinandonsoils,i.e.therespirationofsugars,organicacids,pectinandeasilyaccessiblecelluloseandhemi-cellulose.However,littleisknownaboutthefactorsregulatinginitialwooddecomposition.Weexaminedtheeffectofwoodfragmentsize,verticalposition,nitrogenadditionandsoiloriginoninitialwooddecayandontherelativeimportanceoffungiandbacteriatherein.Twofractionsofbirchwoodwereusedinmicrocosmexperiments,namelywoodblocks(dimensions:3×0.5×0.5cm)andsawdust(dimensions:0.5–2mm).Thewoodyfragmentswereenclosedinnylonbagsandplacedontopof-orburiedinanabandonedarablesoilandinaheathlandsoil.After15,25and40weeksofincubation,fungalbiomasswasquantified(asergosterolandchitincontent)andbacterialnumbersweredetermined.Theresultsindicatedthatinitialwooddecaywasmostlycausedbyfungi;bacteriawereonlycontributinginsawdustin/onabandonedarablesoil.Largerfragmentsize,burialoffragmentsandnitrogenadditionpositivelyinfluencedfungalbiomassandactivity.Fungalbiomassanddecayactivitiesweremuchlowerinwoodyfragmentsincubatedin/onheathlandsoilthaninthoseincubatedin/onabandonedarablesoil,indicatingthatsoiloriginisalsoanimportantfactordetermininginitialwooddecay.
DecipheringtranscriptionalregulatorymechanismsassociatedwithhemicellulosedegradationinNeurosporacrassa.
Sun,J.,Tian,C.,Diamond,S.&Glass,N.L.(2012).EukaryoticCell,11(4),482-493.
LinktoArticle
ReadAbstract
Hemicellulose,thesecondmostabundantplantbiomassfractionaftercellulose,iswidelyviewedasapotentialsubstratefortheproductionofliquidfuelsandothervalue-addedmaterials.Degradationofhemicellulosebyfilamentousfungirequiresproductionofmanydifferentenzymes,whichareinducedbybiopolymersoritsderivativesandregulatedmainlyatthetranscriptionallevelthroughtranscriptionfactors(TFs).Neurosporacrassa,amodelfilamentousfungus,expressesandsecretesenzymesrequiredforplantcellwalldeconstruction.Tobetterunderstandgenesspecificallyassociatedwithdegradationofhemicellulose,weappliedsecretomeandtranscriptomeanalysistoN.crassagrownonbeechwoodxylan.Weidentified34secretedproteinsand353geneswithelevatedtranscriptiononxylan.Thexylanolyticphenotypeofstrainswithdeletionsingenesidentifiedfromthesecretomeandtranscriptomeanalysisofthewildtypewasassessed,revealingfunctionsforknownandunknownproteinsassociatedwithhemicellulosedegradation.ByevaluatingphenotypesofstrainscontainingdeletionsofpredictedTFgenesinN.crassa,weidentifiedaTF(XLR-1;xylandegradationregulator1)essentialforhemicellulosedegradationthatisanorthologtoXlnR/XYR1inAspergillusandTrichodermaspecies,respectively,amajortranscriptionalregulatorofgenesencodingbothcellulasesandhemicellulases.Deletionofxlr-1inN.crassaabolishedgrowthonxylanandxylose,butgrowthoncelluloseandcellulolyticactivitywereonlyslightlyaffected.Todeterminetheregulatorymechanismsforhemicellulosedegradation,weexploredthetranscriptionalregulonofXLR-1underxylose,xylanolytic,andcellulolyticconditions.XLR-1regulatedonlysomepredictedhemicellulasegenesinN.crassaandwasrequiredforafullinductionofseveralcellulasegenes.Hemicellulasegeneexpressionwasinducedbyacombinationofreleasefromcarboncataboliterepression(CCR)andinduction.Thissystematicanalysisillustratesthesimilaritiesanddifferencesinregulationofhemicellulosedegradationamongfilamentousfungi.
IsolationandcharacterizationofaBacilluslicheniformisstraincapableofdegradingzearalenone.
Yi,P.J.,Pai,C.K.,&Liu,J.R.(2011).WorldJournalofMicrobiologyandBiotechnology,27(5),1035-1043.
LinktoArticle
ReadAbstract
Theworldwidecontaminationofcereals,oilseeds,andothercropsbymycotoxin-producingmouldsisasignificantproblem.Mycotoxinshaveadverseeffectsonhumansandanimalsthatresultinillnessesandeconomiclosses.Reductionoreliminationofmycotoxincontaminationinfoodandfeedisanimportantissue.Thisstudyaimedtoscreensoilbacteriafordegradationofzearalenone(ZEN).ApurecultureofstrainCK1isolatedfromsoilsamplesshowedmostcapableofdegradationofZEN.Usingphysiological,biochemical,and16SrRNAgenesequenceanalysismethods,CK1wasidentifiedasBacilluslicheniformis.Additionof2ppmofZENinLuria–Bertani(LB)medium,B.licheniformisCK1decreased95.8%ofZENafter36hofincubation.InZEN-contaminatedcornmealmedium,B.licheniformisCK1decreasedmorethan98%ofZENafter36hofincubation.Inaddition,B.licheniformisCK1wasnon-hemolytic,non-enterotoxinproducing,anddisplayedhighlevelsofextracellularxylanase,cellulase,andproteaseactivities.ThesefindingssuggestthatB.licheniformisCK1couldbeusedtoreducetheconcentrationsofZENandimprovethedigestibilityofnutrientsinfeedstuffssimultaneously.
BiochemicalcharacterizationofanendoxylanasefromPseudozymabrasiliensissp.novstrainGHG001isolatedfromtheintestinaltractofChrysomelidaelarvaeassociatedtosugarcaneroots.
Borges,T.A.,DeSouza,A.T.,Squina,F.M.,Riaño-Pachón,D.M.,DosSantos,R.A.C.,Machado,E.,Oliveira,J.R.L.D.C.,Damásio,A.R.L.&Goldman,G.H.(2014).ProcessBiochemistry,49(1),77-83.
LinktoArticle
ReadAbstract
Endo-xylanasesplayakeyroleinthehydrolysisofxylanandrecentlytheyhaveattractedmuchattentionduetotheirpotentialapplicationsonthebiofuelandpaperindustries.WeisolatedaPseudozymabrasiliensissp.nov.strainfromtheintestinaltractofChrysomelidaelarvaethatparasitizesugarcaneroots.ThisbasidiomycetousyeastproducesaxylanasedesignatedPbXynAwhichwaspurifiedandcharacterized.ThemolecularweightofPbXynAis24kDa,itbelongstotheGH11familyanditsoptimumpHandoptimumtemperatureare4.0and55°C,respectively.PbXynAhasassecondarystructurepredominantlyβ-sheetsandsigmoidalkineticbehaviorwithelevatedspeedconversionfromsubstrate-to-products(Vmax=2792.0μmolproduct/min/mgprotein).ItishighlyactivatedbybivalentcationssuchasCa2+,howeverinthepresenceofCu2+xylanaseactivitywasinhibited.Ithasahighspecificactivityandproducesxylooligosaccharidesthathaveavarietyofindustrialapplications,indicatingPbXynAhasagreatbiotechnologicalpotential.
CreAmediatesrepressionoftheregulatorygenexlnRwhichcontrolstheproductionofxylanolyticenzymesinAspergillusnidulans.
Tamayo,E.N.,Villanueva,A.,Hasper,A.A.,DeGraaff,L.H.,Ramón,D.&Orejas,M.(2008).FungalGeneticsandBiology,45(6),984-993.
LinktoArticle
ReadAbstract
TheAspergillusnidulansxlnRgeneencodesaZn2Cys6transcriptionactivatornecessaryforthesynthesisofthemainxylanolyticenzymes,i.e.endo-xylanasesX22,X24andX34,andβ-xilosidaseXlnD.ExpressionofxlnRisnotsufficientforinductionofgenesencodingthexylanolyticcomplex,thepresenceofxyloseisabsolutelyrequired.Ithasbeenestablishedpreviouslythatthewide-domaincarboncataboliterepressorCreAindirectlyrepressesxlnA(encodesX22)andxlnB(encodesX24)genesaswellasexertingdirectrepressiononxlnA.ThisworkprovidesevidencethatCreA-mediatedindirectrepressionoccursthroughrepressionofxlnR:(i)thexlnRgenepromoterisrepressedbyglucoseandthisrepressionisabolishedincreAd30mutantstrainsand(ii)deregulatedexpressionofxlnRcompletelyrelievesglucoserepressionofxlnAandxlnB.Thus,CreAandXlnRformatranscriptionalcascaderegulatingA.nidulansxylanolyticgenes.
Inductionofmannanase,xylanase,andendoglucanaseactivitiesinSclerotiumrolfsii.
Sachslehner,A.,Nidetzky,B.,Kulbe,K.D.&Haltrich,D.(1998).AppliedandEnvironmentalMicrobiology,64(2),594-600.
LinktoArticle
ReadAbstract
Inductionofmannanase,xylanase,andcellulase(endoglucanase)synthesisintheplant-pathogenicbasidiomyceteSclerotiumrolfsiiwasstudiedbyincubatingnoninduced,restingmyceliawithanumberofmono-,oligo-,andpolysaccharides.Thesimultaneousformationofthesethreeendoglycanasescouldbeprovokedbyseveralpolysaccharidesstructurallyresemblingthecarbohydrateconstituentsoflignocellulose(e.g.,mannanandcellulose),byvariousdisaccharidecatabolitesoftheselignocelluloseconstituents(e.g.,cellobiose,mannobiose,andxylobiose),orbystructurallyrelateddisaccharides(e.g.,lactose,sophorose,andgalactosyl-β-1,4-mannose),aswellasbyL-sorbose.Synthesisofmannanase,xylanase,andendoglucanasealwaysoccurredconcomitantlyandcouldnotbeseparatedbyselectinganappropriateinducer.Variousstructurallydifferentinducingcarbohydratespromotedtheexcretionofthesamemultipleisoformsofendoglycanases,asjudgedfromthesimilarbandingpatternsobtainedinzymogramanalysesofenzymepreparationsobtainedinresponsetothesedifferentinducersandresolvedbyanalyticalisoelectricfocusing.Whereasenhancedxylanaseandendoglucanaseformationisstrictlydependentonthepresenceofsuitableinducers,increasedlevelsofmannanaseareexcretedbyS.rolfsiievenundernoninducing,derepressedconditions,asshowningrowthexperimentswithglucoseasthesubstrate.Significantmannanaseformationcommencedonlywhenglucosewasexhaustedfromthemedium.Undertheseconditions,onlyverylow,presumablyconstitutivelevelsofxylanaseandendoglucanasewereformed.AlthoughtheinductionofthethreeendoglycanasesisverycloselyrelatedinS.rolfsii,itwasconcludedthatthereisnocommon,coordinatedregulatorymechanismthatcontrolsthesynthesisofmannanase,xylanase,andendoglucanase.
Influenceofhightemperatureandethanolonthermostablelignocellulolyticenzymes.
Skovgaard,P.A.&Jørgensen,H.(2013).JournalofIndustrialMicrobiology&Biotechnology,40(5),447-456.
LinktoArticle
ReadAbstract
Lignocellulolyticenzymesareamongthemostcostlypartinproductionofbioethanol.Therefore,recyclingofenzymesisinterestingasaconceptforreductionofprocesscosts.However,stabilityoftheenzymesduringtheprocessiscritical.Inthiswork,focushasbeenoninvestigatingtheinfluenceoftemperatureandethanolonenzymeactivityandstabilityinthedistillationstep,wheremostenzymesareinactivatedduetohightemperatures.Twoenzymemixtures,amesophilicandathermostablemixture,wereexposedtotypicalprocessconditions[temperaturesfrom55to65°Candupto5%ethanol(w/v)]followedbyspecificenzymeactivityanalysesandSDS-PAGE.Thethermostableandmesophilicmixtureremainedactiveatupto65and55°C,respectively.Whentheenzymemixturesreachedtheirmaximumtemperaturelimit,ethanolhadaremarkableinfluenceonenzymeactivity,e.g.,themoreethanol,thefastertheinactivation.Thereasoncouldbethehydrophobicinteractionofethanolonthetertiarystructureoftheenzymeprotein.Thethermostablemixturewasmoretoleranttotemperatureandethanolandcouldthereforebeapotentialcandidateforrecyclingafterdistillation.
High-levelheterologousexpressionofBacillushaloduransputativexylanaseXyn11A(BH0899)inkluyveromyceslacti.
Wamalwa,B.M.,Zhao,G.,Sakka,M.,Shiundu,P.M.,Kimura,T.&Sakka,K.(2007).Bioscience,Biotechnology,andBiochemistry,71(3),688-693.
LinktoArticle
ReadAbstract
Theputativexyn11Astructuralgene(BH0899)encodingafamily-11xylanasefromalkaliphilicBacillushaloduransstrainC-125washeterologouslyexpressedintheyeastKluyveromyceslactisCBS1065andsecretedtoalevelof156μg/mlunderselectivecultureconditionsinshakeflasks.TheXyn11AproductionlevelinshakeflaskculturesofK.lactisCBS1065washigherthanthatreportedforotherxylanasegenesplacedunderthecontroloftheregulatedLAC4promoteronaplasmidcontaininganentiresequenceofpKD1fromKluyveromycesdrosophilarium.RecombinantXyn11AwashighlyactiveoverpHrangefrom3to10,withmaximalactivityaroundpH7.Theenzymeshowedaspecificactivityof628U/mg-proteinonbirchwoodxylanassubstrate,butnocellulaseorβ-xylosidaseactivity.
Diversityoftermitomycesassociatedwithfungus-farmingtermitesassessedbyculturalandculture-independentmethods.
Makonde,H.M.,Boga,H.I.,Osiemo,Z.,Mwirichia,R.,Stielow,J.B.,Göker,M.&Klenk,H.P.(2013).PLoSOne,8(2),e56464.
LinktoArticle
ReadAbstract
Background:Fungus-cultivatingtermitesmakeuseofanobligatemutualismwithfungifromthegenusTermitomyces,whichareacquiredthrougheitherverticaltransmissionviareproductivealatesorhorizontallytransmittedduringtheformationofnewmounds.Termitomycestaxonomy,andthusestimatingdiversityandhostspecificityofthesefungi,ischallengingbecausefruitingbodiesarerarelyfound.Moleculartechniquescanbeappliedbutneednotnecessarilyyieldthesameoutcomethanmorphologicalidentification.Methodology:Culture-dependentandculture-independentmethodswereusedtocomprehensivelyassesshostspecificityandgutfungaldiversity.TermiteswereidentifiedusingmitochondrialcytochromeoxidaseII(COII)genes.Twenty-threeTermitomycescultureswereisolatedfromfungalcombs.Internaltranscribedspacer(ITS)clonelibrarieswereconstructedfromtermiteguts.PresenceofTermitomyceswasconfirmedusingspecificanduniversalprimers.Termitomycesspeciesboundarieswereestimatedbycross-comparisonofmacromorphologicalandsequencefeatures,andITSclusteringparametersaccordinglyoptimized.TheoveralltrendsincoverageofTermitomycesdiversityandhostassociationswereestimatedusingGenbankdata.ResultsandConclusion:ResultsindicateamonocultureofTermitomycesinthegutsaswellastheisolationsources(fungalcombs).However,casesofmorethanoneTermitomycesstrainspermoundwereobservedsincemoundscancontaindifferenttermitecolonies.Thenewlyfoundcultures,aswellastheclusteringanalysisofGenBankdataindicatethatthereareonaveragebetweenoneandtwohostgeneraperTermitomycesspecies.Saturationdoesnotappeartohavebeenreached,neitherforthetotalnumberofknownTermitomycesspeciesnorforthenumberofTermitomycesspeciesperhosttaxon,norforthenumberofknownhostsperTermitomycesspecies.ConsideringtherarityofTermitomycesfruitingbodies,itissuggestedtobasethefuturetaxonomyofthegroupmainlyonwell-characterizedandpubliclyaccessiblecultures.
Novelmodularendo-β-1,4-xylanasewithtransglycosylationactivityfromCellulosimicrobiumsp.strainHY-13thatishomologoustoinvertingGHfamily6enzymes.
Kim,D.Y.,Ham,S.J.,Kim,H.J.,Kim,J.,Lee,M.H.,Cho,H.Y.,Shin,D.H.,Rhee,Y.H.,Son,K.H.&Park,H.Y.(2012).BioresourceTechnology,107,25-32.
LinktoArticle
ReadAbstract
Thegene(2304-bp)encodinganovelxylanolyticenzyme(XylK2)withacatalyticdomain,whichis70%identicaltothatofCellulomonasflavigenaDSM20109GH6β-1,4-cellobiohydrolase,wasidentifiedfromanearthworm(Eiseniafetida)-symbioticbacterium,Cellulosimicrobiumsp.strainHY-13.TheenzymeconsistedofanN-terminalcatalyticGH6-likedomain,afibronectintype3(Fn3)domain,andaC-terminalcarbohydrate-bindingmodule2(CBM2).XylK2δFn3-CBM2displayedhightransferaseactivity(788.3IUmg-1)towardp-nitrophenyl(PNP)cellobioside,butdidnotdegradexylobiose,glucose-basedmaterials,orotherPNP-sugarderivatives.BirchwoodxylanwasdegradedbyXylK2δFn3-CBM2toxylobiose(59.2%)andxylotriose(40.8%).Thetransglycosylationactivityoftheenzyme,whichenabledtheformationofxylobiose(33.6%)andxylotriose(66.4%)fromthehydrolysisofxylotriose,indicatesthatitisnotaninvertingenzymebutaretainingenzyme.Theendo-β-1,4-xylanaseactivityofXylK2δFn3-CBM2increasedsignificantlybyapproximately2.0-foldinthepresenceof50mMxylobiose.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们