Megazyme/偶氮半乳聚糖(马铃薯)/S-AGALP/4克
商品编号:
S-AGALP
品牌:
Megazyme INC
市场价:
¥4152.00
美元价:
2491.20
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
Highpuritydyed,solubleAzo-Galactan(Potato)forthemeasurementofenzymeactivity,forresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Substrateforthespecificmeasurementofendo-1,4-β-D-galactanase.Preparedfrompotatogalactanpre-treatedwithα-L-arABInofuranosidasetoreducearabinosecontent.
FunctionalcharacterizationofthegalactanutilizationsystemofGeobacillusstearoThermophilu.
Tabachnikov,O.&Shoham,Y.(2013).FEBSJournal,280(3),950–964.
LinktoArticle
ReadAbstract
TypeIgalactanisapecticpolysaccharidecomposedofβ-1,4linkedunitsofD-galactoseandispartofthemainplantcellwallpolysaccharides,whicharethemostabundantsourcesofrenewablecarboninthebiosphere.ThethermophilicbacteriumGeobacillusstearothermophilusT-6possessesanextensivesystemfortheutilizationofplantcellwallpolysaccharides,includinga9.4-kbgenecluster,ganREFGBA,whichencodesgalactan-utilizationelements.Basedonenzymeactivityassays,theganEFGBAgenes,whichprobablyconstituteanoperon,areinducedbyshortgalactosaccharidesbutnotbygalactose.GanAisaglycosidehydrolasefamily53β-1,4-galactanase,activeonhighmolecularweightgalactan,producinggalactotetraoseasthemainproduct.Homologymodellingoftheactivesiteresiduessuggeststhattheenzymecanaccommodateatleasteightgalactosemolecules(atsubsites−4to+4)intheactivesite.GanBisaglycosidehydrolasefamily42β-galactosidasecapableofhydrolyzingshortβ-1,4galactosaccharidesintogalactose.ApplyingbothGanAandGanBongalactanresultedinthefulldegradationofthepolymerintogalactose.TheganEFGgenesencodeanATP-bindingcassettesugartransportsystemwhosesugar-bindinglipoprotein,GanE,wasshowntobindgalacto-oligosaccharides.TheutilizationofgalactanbyG.stearothermophilusinvolvestheextracellulargalactanaseGanAcleavinggalactanintogalacto-oligosaccharidesthatenterthecellviaaspecifictransportsystemGanEFG.Thegalacto-oligosaccharidesarefurtherdegradedbytheintracellularβ-galactosidaseGanBintogalactose,whichisthenmetabolizedintoUDP-glucoseviatheLeloirpathwaybythegalKETgeneproducts.
PlantcellwalldegradationbysaprophyticBacillussubtilisstrains:geneclustersresponsIBLeforrhamnogalacturonandepolymerization.
Ochiai,A.,Itoh,T.,Kawamata,A.,Hashimoto,W.&Murata,K.(2007).AppliedandEnvironmentalMicroBIOLOGy,73(12),3803-3813.
LinktoArticle
ReadAbstract
PlantcellwalldegradationisapremiereventwhenBacillussubtilis,atypicalsaprophyticbacterium,invadesplants.HereweshowthedegradationsystemofrhamnogalacturonantypeI(RG-I),acomponentofpectinfromtheplantcellwall,inB.subtilisstrain168.Strain168cellsshowedasignificantgrowthonplantcellwallpolysaccharidessuchaspectin,polygalacturonan,andRG-Iasacarbonsource.DNAmicroarrayanalysisindicatedthatthreegeneclusters(yesOPQRSTUVWXYZ,ytePQRST,andybcMOPST-yBDABDE)areinduciblyexpressedinstrain168cellsgrownonRG-I.Cellsofanindustriallyimportantbacterium,B.subtilisstrainnatto,fermentingsoybeansalsoexpressthegeneclusterincludingtheyesseriesduringtheassimilationofsoybeanusedasacarbonsource.Amongproteinsencodedintheyescluster,YesWandYesXwerefoundtobenoveltypesofRGlyasesreleasingdisaccharidefromRG-I.GeneticandenzymaticpropertiesofYesWandYesXsuggestthatstrain168cellssecreteYesW,whichcatalyzestheinitialcleavageoftheRG-Imainchain,andtheresultantoligosaccharidesareconvertedtodisaccharidesthroughtheextracellularexotypeYesXreaction.ThedisaccharideisfinallydegradedintoitsconstituentmonosaccharidesthroughthereactionofintracellularunsaturatedgalacturonylhydrolasesYesRandYteR.ThisenzymaticrouteforRG-Idegradationinstrain168differssignificantlyfromthatinplant-pathogenicfungusAspergillusaculeatus.Thisis,toourknowledge,thefirstreportonthebacterialsystemforcompleteRG-Imainchaindegradation.
Anewfamilyofrhamnogalacturonanlyasescontainsanenzymethatbindstocellulose.
McKie,V.A.,Vincken,J.P.,Voragen,A.G.J.,vandenBroek,L.A.M.,Stimson,E.&Gilbert,H.J.(2001).Biochem.J,355(1),167-177.
LinktoArticle
ReadAbstract
Pseudomonascellulosaisanaerobicbacteriumthatsynthesizesanextensivearrayofmodularcellulasesandhemicellulases,whichhaveamodulararchitectureconsistingofcatalyticdomainsanddistinctnon-catalyticcarbohydrate-bindingmodules(CBMs).Toinvestigatewhetherthemain-chain-cleavingpectinasesfromthisbacteriumalsohaveamodularstructure,alibraryofP.cellulosagenomicDNA,constructedinλZAPII,wasscreenedforpectinase-encodingsequences.Arecombinantphagethatattackedarabinan,galactanandrhamnogalacturonanwasisolated.Theencodedenzyme,designatedRgl11A,hadamodularstructurecomprisinganN-terminaldomainthatexhibitedhomologytoBacillusandStreptomycesproteinsofunknownfunction,amiddledomainthatexhibitedsequenceidentitytofibronectin-3domains,andaC-terminaldomainthatwashomologoustofamily2aCBMs.ExpressionofthethreemodulesofthePseudomonasproteininEscherichiacolishowedthatitsC-terminalmodulewasafunctionalcellulose-bindingdomain,andtheN-terminalmoduleconsistedofacatalyticdomainthathydrolysedrhamnogalacturonan-containingsubstrates.TheactivityofRgl11Aagainstapple-andpotato-derivedrhamnogalacturonansubstratesindicatedthattheenzymehadastrongpreferenceforrhamnogalacturonansthatcontainedgalactosesidechains,andwhichwerenotesterified.Theenzymehadanabsoluterequirementforcalcium,ahighoptimumpH,andcatalysiswasassociatedwithanincreaseinabsorbanceat235nm,indicatingthatglycosidicbondcleavagewasmediatedviaaβ-eliminationmechanism.ThesedataindicatethatRgl11Aisarhamnogalacturonanlyaseand,togetherwiththehomologousBacillusandStreptomycesproteins,compriseanewfamilyofpolysaccharidelyases.Thepresenceofafamily2aCBMinRgl11A,andinaP.cellulosapectatelyasedescribedintheaccompanyingpaper[Brown,Mallen,Charnock,DaviesandBlack(2001)Biochem.J.355,155–165]suggeststhatthecapacitytobindcelluloseplaysanimportantroleintheactivityofmain-chain-cleavingPseudomonaspectinases,inadditiontocellulasesandhemicellulases.
CharacterizationoftheErwiniachrysanthemiganlocus,involvedingalactancatabolism.
Delangle,A.,Prouvost,A.F.,Cogez,V.,Bohin,J.P.,Lacroix,J.M.&Cotte-Pattat,N.H.(2007).JournalofBacteriology,189(19),7053-7061.
LinktoArticle
ReadAbstract
β-1,4-Galactanisamajorcomponentoftheramifiedregionsofpectin.AnalysisofthegenomeoftheplantpathogenicbacteriaErwiniachrysanthemirevealedthepresenceofaclusterofeightgenesencodingproteinspotentiallyinvolvedingalactanutilization.ThepredictedtransportsystemwouldcompriseaspecificporinGanLandanABCtransportermadeoffourproteins,GanFGK2.Degradationofgalactanswouldbecatalyzedbytheperiplasmic1,4-β-endogalactanaseGanA,whichreleasedoligogalactansfromtrimertohexamer.Aftertheirtransportthroughtheinnermembrane,oligogalactanswouldbedegradedintogalactosebythecytoplasmic1,4-β-exogalactanaseGanB.Mutantsaffectedfortheporinorendogalactanasewereunabletogrowongalactans,buttheygrewongalactoseandonamixtureofgalactotriose,galactotetraose,galactopentaose,andgalactohexaose.Mutantsaffectedfortheperiplasmicgalactanbindingprotein,thetransporterATPase,ortheexogalactanasewereonlyabletogrowongalactose.Thus,thephenotypesofthesemutantsconfirmedthefunctionalityoftheganlocusintransportandcatabolismofgalactans.ThesemutationsdidnotaffectthevirulenceofE.chrysanthemionchicoryleaves,potatotubers,orSaintpauliaionantha,suggestinganaccessoryroleofgalactanutilizationinthebacterialpathogeny.
Theβ-1,4‐endogalactanaseAgenefromAspergillusnigerisspecificallyinducedonarabinoseandgalacturonicacidandplaysanimportantroleinthedegradationofpectichairyregions.
deVries,R.P.,Pařenicová,L.,Hinz,S.W.A.,Kester,H.C.M.,Beldman,G.,Benen,J.A.E.&Visser,J.(2002).EuropeanJournalofBiochemistry,269(20),4985-4993.
LinktoArticle
ReadAbstract
TheAspergillusnigerβ-1,4-endogalactanaseencodinggene(galA)wasclonedandcharacterized.TheexpressionofgalAinA.nigerwasonlydetectedinthepresenceofsugarbeetpectin,D-galacturonicacidandL-arabinose,suggestingthatgalAiscoregulatedwithboththepectinolyticgenesaswellasthearabinanolyticgenes.Thecorrespondingenzyme,endogalactanaseA(GALA),containsbothactivesiteresiduesidentifiedpreviouslyforthePseudomonasfluorescensβ-1,4-endogalactanase.ThegalAgenewasoverexpressedtofacilitatepurificationofGALA.Theenzymehasamolecularmassof48.5kDaandapHoptimumbetween4and4.5.Incubationsofarabinogalactansofpotato,onionandsoywithGALAresultedinitiallyinthereleaseofD-galactotrioseandD-galactotetraose,whereasprolongedincubationresultedinD-galactoseandD-galactobiose,predominantly.MALDI-TOFanalysisrevealedthereleaseofL-arabinosesubstitutedD-galactooligosaccharidesfromsoyarabinogalactan.Thisisthefirstreportoftheabilityofaβ-1,4-endogalactanasetoreleasesubstitutedD-galacto-oligosaccharides.GALAwasnotactivetowardsD-galacto-oligosaccharidesthatweresubstitutedwithD-glucoseatthereducingend.
EvidencethatgalactanaseAfromPseudomonasfluorescenssubspeciescellulosaisaretainingfamily53glycosylhydrolaseinwhichE161andE270arethecatalyticresidues.
Braithwaite,K.L.,Barna,T.,Spurway,T.D.,Charnock,S.J.,Black,G.W.,Hughes,N.,Lakey,J.H.,Virden,R.,Hazelwood,G.P.,Henrissat,B.&Gilbert,H.J.(1997).Biochemistry,36(49),15489-15500.
LinktoArticle
ReadAbstract
AgenomiclibraryofPseudomonasfluorescenssubsp.cellulosaDNAwasscreenedforgalactanase-positiverecombinants.TheninegalactanasepositivephageisolatedcontainedthesamegalactanasegenedesignatedgalA.Thededucedprimarystructureoftheenzyme(galactanaseA;GalA)encodedbygalAhadaMrof42 130andexhibitedsignificantsequenceidentitywithagalactanasefromAspergillusaculeatus,placingGalAinglycosylhydrolasefamily53.Theenzymedisplayedpropertiestypicalofanendo-β1,4-galactanaseandexhibitednoactivityagainsttheotherplantstructuralpolysaccharidesevaluated.Analysisofthestereochemicalcourseof2,4-dinitrophenyl-β-galactobioside(2,4-DNPG2)hydrolysisbyGalAindicatedthatthegalactanasecatalyzesthehydrolysisofglycosidicbondsbyadoubledisplacementgeneralacid−basemechanism.Hydrophobicclusteranalysis(HCA)suggestedthatfamily53enzymesarerelatedtotheGH-Aclanofglycosylhydrolases,whichhavean(α)/β)8barrelstructure.HCAalsopredictedthatE161andE270weretheacid−baseandnucleophilicresidues,respectively.MutantsofGalAinwhichE161andE270hadbeenreplacedwithalanineresidueswereessentiallyinactiveagainstgalactan.Against2,4-DNPG2,E161AexhibitedamuchlowerKmandkcatthannativeGalA,whileE270Awasinactiveagainstthesubstrate.Analysisofthepre-steady-statekineticsof2,4-DNPG2hydrolysisbyE161Ashowedthattherewasaninitialrapidreleaseof2,4-dinitrophenol(2,4-DNP),whichthendecayedtoaslowsteady-staterateofproductformation.Nopre-steady-stateburstof2,4-DNPreleasewasobservedwiththewild-typeenzyme.ThesedataareconsistentwiththeHCApredictionthatE161andE270aretheacid−baseandnucleophiliccatalyticresiduesofGalA,respectively.
Asimpleassayprocedureforβ-D-mannanase.
McCleary,B.V.(1978).CarbohydrateResearch,67(1),213-221.
LinktoArticle
ReadAbstract
Asimpleassayprocedureforβ-D-mannanaseenzymehasbeendevelopedwhichemployscarobD-galacto-D-mannandyedwithRemazolbrilliantBlue.Additionally,theprocedureisquantitative,relativelysensitive,andhighlyspecificforβ-D-mannanaseenzyme.ItcanbereADIlyusedforthedeterminationofβ-D-mannanaseactivityincrudeenzymepreparationsandcolumn-chromatographyeluates.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们