Megazyme/Arabinan(甜菜)/P-ARAB/8克
商品编号:
P-ARAB
品牌:
Megazyme INC
市场价:
¥3240.00
美元价:
1944.00
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityArABInan(SugarBeet)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Purity~95%.Ara:Gal:Rha:GalUA:othersugars=69:18.7:1.4:10.2:0.7
Hydrolysisofwheatflourarabinoxylan,acid-debranchedwheatflourarabinoxylanandarabino-xylo-oligosaccharidesbyβ-xylanase,α-L-arabinofuranosidaseandβ-xylosidase.
McCleary,B.V.,McKie,V.A.,Draga,A.,Rooney,E.,Mangan,D.&Larkin,J.(2015).CarbohydrateResearch,407,79-96.
LinktoArticle
ReadAbstract
Arangeofα-L-arabinofuranosyl-(1-4)-β-D-xylo-oligosaccharides(AXOS)wereproducedbyhydrolysisofwheatflourarabinoxylan(WAX)andaciddebranchedarabinoxylan(ADWAX),inthepresenceandabsenceofanAXH-d3α-L-arabinofuranosidase,byseveralGH10andGH11β-xylanases.ThestructuresoftheoligosaccharideswerecharacterisedbyGC-MSandNMRandbyhydrolysisbyarangeofα-L-arabinofuranosidasesandβ-xylosidase.TheAXOSwerepurifiedandusedtocharacterisetheactionpatternsofthespecificα-L-arabinofuranosidases.Theseenzymes,incombinationwitheitherCellvibriomixtusorNeocallimastixpatriciarumβ-xylanase,wereusedtoproduceelevatedlevelsofspecificAXOSonhydrolysisofWAX,suchas32-α-L-Araf-(1-4)-β-D-xylobiose(A3X),23-α-L-Araf-(1-4)-β-D-xylotriose(A2XX),33-α-L-Araf-(1-4)-β-D-xylotriose(A3XX),22-α-L-Araf-(1-4)-β-D-xylotriose(XA2X),32-α-L-Araf(1-4)-β-D-xylotriose(XA3X),23-α-L-Araf-(1-4)-β-D-xylotetraose(XA2XX),33-α-L-Araf-(1-4)-β-D-xylotetraose(XA3XX),23,33-di-α-L-Araf-(1-4)-β-D-xylotriose(A2+3XX),23,33-di-α-L-Araf-(1-4)-β-D-xylotetraose(XA2+3XX),24,34-di-α-L-Araf-(1-4)-β-D-xylopentaose(XA2+3XXX)and33,34-di-α-L-Araf-(1-4)-β-D-xylopentaose(XA3A3XX),manyofwhichhavenotpreviouslybeenproducedinsufficientquantitiestoallowtheiruseassubstratesinfurtherenzymicstudies.ForA2,3XX,yieldsofapproximately16%ofthestartingmaterial(wheatarabinoxylan)havebeenachieved.Mixturesoftheα-L-arabinofuranosidases,withspecificactiononAXOS,havebeencombinedwithβ-xylosidaseandβ-xylanasetoobtainanoptimalmixtureforhydrolysisofarabinoxylantoL-arabinoseandD-xylose.
Developmentalcomplexityofarabinanpolysaccharidesandtheirprocessinginplantcellwalls.
Verhertbruggen,Y.,Marcus,S.E.,Haeger,A.,Verhoef,R.,Schols,H.A.,McCleary,B.V.,McKee,L.,Gilbert,H.J.&PaulKnox,J.(2009).ThePlantJournal,59(3),413-425.
LinktoArticle
ReadAbstract
Plantcellwallsareconstructedfromadiversityofpolysaccharidecomponents.Molecularprobesdirectedtostructuralelementsofthesepolymersarerequiredtoassaypolysaccharidestructuresinsitu,andtodeterminepolymerrolesinthecontextofcellwallBIOLOGy.Here,wereportontheisolationandthecharacterizationofthreeratmonoclonalantibodiesthataredirectedto1,5-linkedarabinansandrelatedpolymers.LM13,LM16andLM17,togetherwithLM6,constituteasetofantibodiesthatcandetectdifferingaspectsofarabinanstructureswithincellwalls.EachoftheseantibodiesbindsstronglytoisolatedsugarbeetarabinansamplesinELISAs.Competitive-inhibitionELISAsindicatetheantibodiesbinddifferentiallytoarabinanswiththebindingofLM6andLM17beingeffectivelyinhibitedbyshortoligoarabinosides.LM13bindspreferentiallytolongeroligoarabinosides,anditsbindingishighlysensitivetoarabinanaseaction,indicatingtherecognitionofalongerlinearizedarabinanepitope.Incontrast,thebindingofLM16tobranchedarabinanandtocellwallsisincreasedbyarabinofuranosidaseaction.Thepresenceofallepitopescanbedifferentiallymodulatedinvitrousingglycosidehydrolasefamily43andfamily51arabinofuranosidases.Inaddition,theLM16epitopeissensitivetotheactionofβ-galactosidase.Immunofluorescencemicroscopyindicatesthattheantibodiescanbeusedtodetectepitopesincellwalls,andthatthefourantibodiesrevealcomplexpatternsofepitopeoccurrencethatvarybetweenorgansandspecies,andrelatebothtotheprobableprocessingofarabinanstructuralelementsandthedifferingmechanicalpropertiesofcellwalls.
CompletegenomeofanewFirmicutesspeciesbelongingtothedominanthumancolonicmicrobiota(‘Ruminococcusbicirculans’)revealstwochromosomesandaselectivecapacitytoutilizeplantglucans.
Wegmann,U.,Louis,P.,Goesmann,A.,Henrissat,B.,Duncan,S.H.&Flint,H.J.(2014).EnvironmentalMicrobiology,16(9),2879–2890.
LinktoArticle
ReadAbstract
Therecentlyisolatedbacterialstrain80/3representsoneofthemostabundant16SrRNAphylotypesdetectedinthehealthyhumanlargeintestineandbelongstotheRuminococcaceaefamilyofFirmicutes.Thecompletedgenomesequencereportedhereisthefirstforamemberofthisimportantfamilyofbacteriafromthehumancolon.Thegenomecomprisestwolargechromosomesof2.24and0.73Mbp,leADIngustoproposethenameRuminococcusbicirculansforthisnewspecies.Analysisofthecarbohydrateactiveenzymecomplementsuggestsanabilitytoutilizecertainhemicelluloses,especiallyβ-glucansandxyloglucan,forgrowththatwasconfirmedexperimentally.Theenzymaticmachineryenablingthedegradationofcelluloseandxylanbyrelatedcellulolyticruminococciishoweverlackinginthisspecies.Whilethegenomeindicatedthecapacitytosynthesizepurines,pyrimidinesandall20aminoacids,onlygenesforthesynthesisofnicotinate,NAD+,NADP+andcoenzymeAweredetectedamongtheessentialvitaminsandco-factors,resultinginmultiplegrowthrequirements.Invivo,thesegrowthfactorsmustbesuppliedfromthediet,hostorothergutmicroorganisms.OtherfeaturesofecologicalinterestincludetwotypeIVpilins,multipleextracytoplasmicfunction-sigmafactors,aureaseandabilesalthydrolase.
Cellulosemicrofibrilanglesandcell-wallpolymersindifferentwoodtypesofPinusradiata.
Brennan,M.,McLean,J.P.,Altaner,C.M.,Ralph,J.&Harris,P.J.(2012).Cellulose,19(4),1385-1404.
LinktoArticle
ReadAbstract
FourcorewoodtypeswereexaminedfromsaplingtreesoftwoclonesofPinusradiatagrowninaglasshouse.Treesweregrowneitherstraighttoproducenormalcorewood,tiltedat45°fromtheverticaltoproduceoppositecorewoodandcompressioncorewood,orrockedtoproduceflexurecorewood.MeancellulosemicrofibrilangleoftracheidwallswasestimatedbyX-raydiffractionandlongitudinalswellingmeasuredbetweenanovendryandmoisturesaturatedstate.Ligninandacetylcontentsofthewoodsweremeasuredandthemonosaccharidecompositionsofthecell-wallpolysaccharidesdetermined.Finelymilledwoodwasanalysedusingsolution-state2DNMRspectroscopyofgelsfromfinelymilledwoodinDMSO-d6/pyridine-d5.Althoughtherewasnosignificantdifferenceincellulosemicrofibrilangleamongthecorewoodtypes,compressioncorewoodhadthehighestlongitudinalswelling.Alignincontent>32%andagalactosylresiduecontent>6%clearlydividedseverecompressioncorewoodfromtheothercorewoodtypes.Relationshipscouldbedrawnbetweenlignincontentandlongitudinalswelling,andbetweengalactosylresiduecontentandlongitudinalswelling.The2DNMRspectrashowedthatthepresenceofH-unitsinligninwasexclusivetocompressioncorewood,whichalsohadahigher(1→4)-β-D-galactancontent,definingauniquecompositionforthatcorewoodtype.
L-Arabinoseproductionfromsugarbeetarabinanbyimmobilizedendo-andexo-arabinanasesfromCaldicellulosiruptorsaccharolyticusinapacked-bedreactor.
Kim,Y.S.,Lim,Y.R.&Oh,D.K.(2012).JournalofBioscienceandBioengineering,113(2),239-241.
LinktoArticle
ReadAbstract
Theimmobilizedendo-andexo-arabinanasesfromCaldicellulosiruptorsaccharolyticusproducedcontinuouslyanaverageof16.5gl-1L-arabinosefrom20gl-1sugarbeetarabinanatpH5.0and75°Cfor216h,withaproductivityof9.9gl-1h-1andaconversionyieldof83%.
MappingthepolysaccharidedegradationpotentialofAspergillusniger.
Andersen,M.R.,Giese,M.,deVries,R.P.&Nielsen,J.(2012).BMCGenomics,13(1),313.
LinktoArticle
ReadAbstract
Background:Thedegradationofplantmaterialsbyenzymesisanindustryofincreasingimportance.Forsustainableproductionofsecondgenerationbiofuelsandotherproductsofindustrialbiotechnology,efficientdegradationofnon-edIBLeplantpolysaccharidessuchashemicelluloseisrequired.Foreachtypeofhemicellulose,acomplexmixtureofenzymesisrequiredforcompleteconversiontofermentablemonosaccharides.Inplant-biomassdegradingfungi,theseenzymesareregulatedandreleasedbycomplexregulatorystructures.Inthisstudy,wepresentamethodologyforevaluatingthepotentialofagivenfungusforpolysaccharidedegradation.Results:Throughthecompilationofinformationfrom203articles,wehavesystematizedknowledgeonthestructureanddegradationof16majortypesofplantpolysaccharidestoformagraphicaloverview.Asacaseexample,wehavecombinedthiswithalistof188genescodingforcarbohydrate-activeenzymesfromAspergillusniger,thusformingananalysisframework,whichcanbequeried.Combinationofthisinformationnetworkwithgeneexpressionanalysisonmono-andpolysaccharidesubstrateshasallowedelucidationofconcertedgeneexpressionfromthisorganism.Onesuchexampleistheidentificationofafullsetofextracellularpolysaccharide-actinggenesforthedegradationofoatspeltxylan.Conclusions:Themappingofplantpolysaccharidestructuresalongwiththecorrespondingenzymaticactivitiesisapowerfulframeworkforexpressionanalysisofcarbohydrate-activeenzymes.Applyingthisnetwork-basedapproach,weprovidethefirstgenome-scalecharacterizationofallgenescodingforcarbohydrate-activeenzymesidentifiedinA.niger.
Arevisedarchitectureofprimarycellwallsbasedonbiomechanicalchangesinducedbysubstrate-specificendoglucanases.
Park,Y.B.&Cosgrove,D.J.(2012).PlantPhysiology,158(4),1933-1943.
LinktoArticle
ReadAbstract
Xyloglucaniswidelybelievedtofunctionasatetherbetweencellulosemicrofibrilsintheprimarycellwall,limitingcellenlargementbyrestrictingtheabilityofmicrofibrilstoseparatelaterally.Totestthebiomechanicalpredictionsofthis“tetherednetwork”model,weassessedtheabilityofcucumber(Cucumissativus)hypocotylwallstoundergocreep(long-term,irreversibleextension)inresponsetothreefamily-12endo-β-1,4-glucanasesthatcanspecificallyhydrolyzexyloglucan,cellulose,orboth.Xyloglucan-specificendoglucanase(XEGfromAspergillusaculeatus)failedtoinducecellwallcreep,whereasanendoglucanasethathydrolyzesbothxyloglucanandcellulose(Cel12AfromHypocreajecorina)inducedahighcreeprate.Acellulose-specificendoglucanase(CEGfromAspergillusniger)didnotcausecellwallcreep,eitherbyitselforincombinationwithXEG.Testswithadditionalenzymes,includingafamily-5endoglucanase,confirmedtheconclusionthattocausecreep,endoglucanasesmustcutbothxyloglucanandcellulose.Similarresultswereobtainedwithmeasurementsofelasticandplasticcompliance.BothXEGandCel12Ahydrolyzedxyloglucaninintactwalls,butCel12AcouldhydrolyzeaminorxyloglucancompartmentrecalcitranttoXEGdigestion.XyloglucaninvolvementintheseenzymeresponseswasconfirmedbyexperimentswithArabidopsis(Arabidopsisthaliana)hypocotyls,whereCel12Ainducedcreepinwild-typebutnotinxyloglucan-deficient(xxt1/xxt2)walls.Ourresultsareincompatiblewiththecommondepictionofxyloglucanasaload-bearingtetherspanningthe20-to40-nmspacingbetweencellulosemicrofibrils,buttheydoimplicateaminorxyloglucancomponentinwallmechanics.Thestructurallyimportantxyloglucanmaybelocatedinlimitedregionsoftightcontactbetweenmicrofibrils.
Structuralbasisforentropy-drivencellulosebindingbyatype-Acellulose-bindingmodule(CBM)andbacterialexpansin.
Georgelis,N.,Yennawar,N.H.&Cosgrove,D.J.(2012).ProceedingsoftheNationalAcademyofSciences,109(37),14830-14835.
LinktoArticle
ReadAbstract
Componentsofmodularcellulases,type-Acellulose-bindingmodules(CBMs)bindtocrystallinecelluloseandenhanceenzymeeffectiveness,butstructuraldetailsoftheinteractionareuncertain.WeanalyzedcellulosebindingbyEXLX1,abacterialexpansinwithabilitytoloosenplantcellwallsandwhosedomainD2hastype-ACBMcharacteristics.EXLX1stronglybindstocrystallinecelluloseviaD2,whereasitsaffinityforsolublecellooligosaccharidesisweak.Calorimetryindicatedcellulosebindingwaslargelyentropicallydriven.WesolvedthecrystalstructuresofEXLX1complexedwithcellulose-likeoligosaccharidestofindthatEXLX1bindstheligandsthroughhydrophobicinteractionsofthreelinearlyarrangedaromaticresiduesinD2.Thecrystalstructuresrevealedauniqueformofligand-mediateddimerization,withtheoligosaccharidesandwichedbetweentwoD2domainsinoppositepolarity.Thisreportclarifiesthemoleculartargetofexpansinandthespecificmolecularinteractionsofatype-ACBMwithcellulose.
PrioritizationofaplantpolysaccharideoveramucuscarbohydrateisenforcedbyaBacteroideshybridtwo‐componentsystem.
Lynch,J.B.&Sonnenburg,J.L.(2012).MolecularMicrobiology,85(3),478-491.
LinktoArticle
ReadAbstract
Bacteroidesisadominantgenuswithintheintestinalmicrobiotaofhealthyhumans.KeyadaptationsoftheBacteroidestothedynamicintestinalecosystemincludeadiverserepertoireofgenesinvolvedinsensingandprocessingnumerousdiet-andhost-derivedpolysaccharides.Onesuchadaptationisthecarbohydrate-sensinghybridtwo-componentsystem(HTCS)familyofsignallingsensors,whichhasbeenwidelyexpandedwithintheBacteroides.UsingBacteroidesthetaiotaomicronasamodel,wehavecreatedachimericHTCSconsistingofthewell-characterizedsensingdomainofoneHTCS,BT1754,andtheregulatorydomainofanotherHTCS,BT0366,toexploretheregulatorycapabilitiesofthesemolecules.WefoundthattheBT0366regulatoryregiondirectlybindstoandmediatesinductionoftheadjacentpolysaccharideutilizationlocus(PUL)usingwhole-genometranscriptionalprofilingafterinducingsignallingthroughourchimericprotein.WealsofoundthatBT0366activationsimultaneouslyleadstorepressionofdistalPULsinvolvedinmucuscarbohydrateconsumption.TheseresultssuggestanovelmechanismbywhichanHTCSenforcesanutrienthierarchywithintheBacteroidesviainductionandrepressionofmultiplePULs.Thus,hybridtwo-componentsystemsprovideamechanismforprioritizingconsumptionofcarbohydratesthroughsimultaneousbindingandregulationofmultiplepolysaccharideutilizationloci.
Exo-arabinanaseofPenicilliumchrysogenumabletoreleasearabinobiosefromα-1,5-L-arabinan.
Sakamoto,T.&Thibault,J.F.(2001).AppliedandEnvironmentalMicrobiology,67(7),3319-3321.
LinktoArticle
ReadAbstract
Anexo-arabinanase,designatedAbnx,waspurifiedfromaculturefiltrateofPenicilliumchrysogenum31Bbyammoniumsulfateprecipitation,anion-exchangechromatography,andhydrophobicchromatography.Abnxhadanapparentmolecularmassof47kDa.Theenzymereleasedonlyarabinobiosefromthenonreducingterminusofα-1,5-L-arabinanandshowednoactivitytowardsp-nitrophenyl-α-L-arabinofuranosideandα-1,5-L-arabinofuranobiose.Abnxisthefirstenzymewiththismodeofaction.
Isolationofdiferulicbridgesester-linkedtoarabinaninsugarbeetcellwalls.
Levigne,S.,Ralet,M.C.,Quéméner,B.&Thibault,J.F.(2004).CarbohydrateResearch,339(13),2315-2319.
LinktoArticle
ReadAbstract
AfterdegradationofsugarbeetcellwallswithDriselase®andfractionationofthesolubilisedproductsbyhydrophobicinteractionchromatography,adehydrodiferuloylatedoligoarabinanwasisolated.Itsstructurewasassignedtotwodimersof(1→5)-linkedarabinoseunitsesterifiedbyacentral8-O-4′ferulicdimer.Theseresultsprovidethefirstdirectevidencethatpecticarabinansinsugarbeetcellwallsmaybecovalentlycross-linkedthroughdehydrodiferulates.
Roleof(1,3)(1,4)β-glucanincellwalls:Interactionwithcellulose.
Kiemle,S.N.,Zhang,X.,Esker,A.R.,Toriz,G.,Gatenholm,P.&Cosgrove,D.J.(2014).Biomacromolecules,15(5),1727-1736.
LinktoArticle
ReadAbstract
(1,3)(1,4)-β-D-Glucan(mixed-linkageglucanorMLG),acharacteristichemicelluloseinprimarycellwallsofgrasses,wasinvestigatedtodeterminebothitsroleincellwallsanditsinteractionwithcelluloseandothercellwallpolysaccharidesinvitro.BindingisothermsshowedthatMLGadsorptionontomicrocrystallinecelluloseisslow,irreversible,andtemperature-dependent.MeasurementsusingquartzcrystalmicrobalancewithdissipationmonitoringshowedthatMLGadsorbedirreversiblyontoamorphousregeneratedcellulose,formingathickhydrogel.Oligosaccharideprofilingusingendo-(1,3)(1,4)-β-glucanaseindicatedthattherewasnodifferenceinthefrequencyanddistributionof(1,3)and(1,4)linksinboundandunboundMLG.ThebindingofMLGtocellulosewasreducedifthecellulosesampleswerefirsttreatedwithcertaincellwallpolysaccharides,suchasxyloglucanandglucuronoarabinoxylan.ThetetheringfunctionofMLGincellwallswastestedbyapplyingendo-(1,3)(1,4)-β-glucanasetowallsamplesinaconstantforceextensometer.Cellwallextensionwasnotinduced,whichindicatesthatenzyme-accessibleMLGdoesnottethercellulosefibrilsintoaload-bearingnetwork.
AspergillusfumigatusProducesTwoArabinofuranosidasesFromGlycosylHydrolaseFamily62:ComparativePropertiesoftheRecombinantEnzymes.
Pérez,R.&Eyzaguirre,J.(2016).Appliedbiochemistryandbiotechnology,179(1),143-154.
LinktoArticle
ReadAbstract
Thegenesoftwoα-L-arabinofuranosidases(AbfI andII)fromfamilyGH62havebeenidentifiedinthegenomeofAspergillusfumigatuswmo.BothgeneshavebeenexpressedinPichiapastorisandtheenzymeshavebeenpurifiedandcharacterized.AbfIiscomposedof999 bp,doesnotcontainintronsandcodesforaprotein(ABFI)of332aminoacidresidues.abfIIhas1246 bp,includinganintronof51 bp;theproteinABFIIhas396aminoacidresidues;itincludesafamily1carbohydrate-bindingmodule(CBM)intheN-terminalregion,followedbyacatalyticmodule.ThesequenceofABFIandthecatalyticmoduleofABFIIshowa79 %identity.Bothenzymesareactiveonp-nitrophenylα-L-arabinofuranoside(pNPAra)withKMof94.2and3.9 mMforABFIandII,respectively.OptimaltemperatureforABFIis37°CandforABFII42°C,whilethepHoptimumisabout4.5to5forbothenzymes.ABFIIshowsahigherThermostability.Whenassayedusingnaturalsubstrates,bothshowhigheractivityoverryearabinoxylanascomparedtowheatarabinoxylan.ABFIIonlyisactiveonsugarbeetpulparabinanandbothareinactivetowardsdebranchedarabinan.Thehigherthermostability,higheraffinityforpNPAraandwideractivityovernaturalsubstratesshownbyABFIImayberelatedtothepresenceofaCBM.Theavailabilityoftherecombinantenzymesmaybeusefulinbiotechnologicalapplicationsfortheproductionofarabinose.
OptimizationofArundodonaxSaccharificationby(Hemi)cellulolyticEnzymesfromPleurotusostreatus.
Liguori,R.,Ionata,E.,Marcolongo,L.,Vandenberghe,L.P.D.S.,LaCara,F.&Faraco,V.(2015).BioMedresearchInternational, 2015,ArticleID951871.
LinktoArticle
ReadAbstract
AnenzymaticmixtureofcellulasesandxylanaseswasproducedbyPleurotusostreatususingmicrocrystallinecelluloseasinducer,partiallycharacterizedandtestedinthestatisticalanalysisofArundodonaxbioconversion.ThePlackett-BurmanscreeningdesignwasappliedtoidentifythemostsignificantparametersfortheenzymatichydrolysisofpretreatedA.donax.AsthemostsignificantinfluenceduringtheenzymatichydrolysisofA.donaxwasexercisedbythetemperature(°C),pH,andtime,thecombinedeffectofthesefactorsinthebioconversionbyP.ostreatuscellulaseandxylanasewasanalyzedbya33factorialexperimentaldesign.Itisworthnotingthatthebestresultof480.10 mgofsugars/gds,obtainedat45°C,pH3.5,and96hoursofincubation,wassignificantalsowhencomparedwiththeresultspreviouslyreachedbyprocessoptimizationwithcommercialenzymes.
ProteomicinsightsintomannandegradationandproteinsecretionbytheforestfloorbacteriumChitinophagapinensis.
Larsbrink,J.,Tuveng,T.R.,Pope,P.B.,Bulone,V.,Eijsink,V.G.,Brumer,H.&McKee,L.S.(2017).JournalofProteomics,156,63-74.
LinktoArticle
ReadAbstract
Togetherwithfungi,saprophyticbacteriaarecentraltothedecompositionandrecyclingofbiomassinforestenvironments.TheBacteroidetesphylumisabundantindiversehabitats,andseveralspecieshavebeenshowntobeabletodeconstructawidevarietyofcomplexcarbohydrates.ThegenusChitinophagaisoftenenrichedinhotspotsofplantandmicrobialbiomassdegradation.WepresentaproteomicassessmentoftheabilityofChitinophagapinensistogrowonanddegrademannanpolysaccharides,usinganagaroseplate-basedmethodofproteincollectiontominimisecontaminationwithexopolysaccharidesandproteinsfromlysedcells,andtoreflecttherealisticsettingofgrowthonasolidsurface.WeshowthatselectPolysaccharideUtilisationLoci(PULs)areexpressedindifferentgrowthconditions,andidentifyenzymesthatmaybeinvolvedinmannandegradation.Bycomparingproteomicandenzymaticprofiles,weshowevidencefortheinducedexpressionofenzymesandPULsincellsgrownonmannanpolysaccharidescomparedwithcellsgrownonglucose.Inaddition,weshowthatthesecretionofputativebiomass-degradingenzymesduringgrowthonglucosecomprisesasystemfornutrientscavenging,whichemploysconstitutivelyproducedenzymes.Significanceofthisstudy:Chitinophagapinensisbelongstoabacterialgenuswhichisprominentinmicrobialcommunitiesinagriculturalandforestenvironments,whereplantandfungalbiomassisintensivelydegraded.Suchdegradationishugelysignificantintherecyclingofcarboninthenaturalenvironment,andtheenzymesresponsibleareofbiotechnologicalrelevanceinemergingtechnologiesinvolvingthedeconstructionofplantcellwallmaterial.Thebacteriumhasacomparativelylargegenome,whichincludesmanyuncharacterisedcarbohydrate-activeenzymes.Wepresentthefirstproteomicassessmentofthebiomass-degradingmachineryofthisspecies,focusingonmannan,anabundantplantcellwallhemicellulose.Ourfindingsincludetheidentificationofseveralnovelenzymes,whicharepromisingtargetsforfuturebiochemicalcharacterisation.Inaddition,thedataindicatetheexpressionofspecificPolysaccharideUtilisationLoci,inducedinthepresenceofdifferentgrowthsubstrates.Wealsohighlighthowaconstitutivesecretionofenzymeswhichdeconstructmicrobialbiomasslikelyformspartofanutrientscavengingprocess.
ThetranscriptionfactorPDR-1isamulti-functionalregulatorandkeycomponentofpectindeconstructionandcatabolisminNeurosporacrassa.
Thieme,N.,Wu,V.W.,Dietschmann,A.,Salamov,A.A.,Wang,M.,Johnson,J.,Singan,V.R.,Grigoriev,I.V.,Glass,N.L.,Somerville,C.R.,&Benz,J.P.(2017).BiotechnologyforBiofuels,10(1),149.
LinktoArticle
ReadAbstract
Background:Pectinisanabundantcomponentinmanyfruitandvegetablewastesandcouldthereforebeanexcellentresourceforbiorefinery,butiscurrentlyunderutilized.Fungalpectinasesalreadyplayacrucialroleforindustrialpurposes,suchasforfoodstuffprocessing.However,theregulationofpectinasegeneexpressionisstillpoorlyunderstood.Foranoptimalutilizationofplantbiomassforbiorefineryandbiofuelproduction,adetailedanalysisoftheunderlyingregulatorymechanismsiswarranted.Inthisstudy,weappliedthegeneticresourcesofthefilamentousascomycetespeciesNeurosporacrassatoscreenfortranscriptionfactorsthatplayamajorroleinpectinaseinduction.Results:Thepectindegradationregulator-1(PDR-1)wasidentifiedthroughatranscriptionfactormutantscreeninN.crassa.TheΔpdr-1mutantexhibitedaseveregrowthdefectonpectinandalltestedpectin-relatedpoly-andmonosaccharides.BiochemicalaswellastranscriptionalanalysesofWTandtheΔpdr-1mutantrevealedthatwhilePDR-1-mediatedgeneinductionwasdependentonthepresenceofL-rhamnose,italsostronglyaffectedthedegradationofthehomogalacturonanbackbone.Theexpressionoftheendo-polygalacturonasegh28-1wasgreatlyreducedintheΔpdr-1mutant,whiletheexpressionlevelsofallpectatelyasegenesincreased.Moreover,apdr-1overexpressionstraindisplayedsubstantiallyincreasedpectinaseproduction.PromoteranalysisofthePDR-1regulonallowedrefinementoftheputativePDR-1DNA-bindingmotif.Conclusions:PDR-1ishighlyconservedinfilamentousascomycetefungiandispresentinmanypathogenicandindustriallyimportantfungi.OurdatademonstratethatthefunctionofPDR-1inN.crassacombinesfeaturesoftworecentlydescribedtranscriptionfactorsinAspergillusniger(RhaR)andBotrytiscinerea(GaaR).Theresultspresentedinthisstudycontributetoabroaderunderstandingofhowpectindegradationisorchestratedinfilamentousfungiandhowitcouldbemanipulatedforoptimizedpectinaseproduction.
ReciprocalPrioritizationtoDietaryGlycansbyGutBacteriainaCompetitiveEnvironmentPromotesStableCoexistence.
Tuncil,Y.E.,Xiao,Y.,Porter,N.T.,Reuhs,B.L.,Martens,E.C.&Hamaker,B.R.(2017).mBio,8(5),e01068-17.
LinktoArticle
ReadAbstract
Whenpresentedwithnutrientmixtures,severalhumangutBacteroidesspeciesexhibithierarchicalutilizationofglycansthroughaphenomenonthatresemblescataboliterepression.However,itisunclearhowcloselytheseobservedphysiologicalchanges,oftenmeasuredbyalteredtranscriptionofglycanutilizationgenes,mirroractualglycandepletion.Tounderstandtheglycanprioritizationstrategiesoftwocloselyrelatedhumangutsymbionts,BacteroidesovatusandBacteroidesthetaiotaomicron,weperformedaseriesoftimecourseassaysinwhichbothspecieswereindividuallygrowninamediumwithsixdifferentglycansthatbothspeciescandegrade.Disappearanceofthesubstratesandtranscriptionofthecorrespondingpolysaccharideutilizationloci(PULs)weremeasured.Eachspeciesutilizedsomeglycansbeforeothers,butwithdifferentprioritiesperspecies,providinginsightintospecies-specifichierarchicalpreferences.Ingeneral,thepresenceofhighlyprioritizedglycansrepressedtranscriptionofgenesinvolvedinutilizinglower-prioritynutrients.However,transcriptionalsensitivitytosomeglycansvariedrelativetotheresidualconcentrationinthemedium,withsomePULsthattargethigh-prioritysubstratesremaininghighlyexpressedevenaftertheirtargetglycanhadbeenmostlydepleted.Coculturingoftheseorganismsinthesamemixtureshowedthatthehierarchicalordersgenerallyremainedthesame,promotingstablecoexistence.Polymerlengthwasfoundtobeacontributingfactorforglycanutilization,therebyaffectingitsplaceinthehierarchy.OurfindingsnotonlyelucidatehowB.ovatusandB.thetaiotaomicronstrategicallyaccessglycanstomaintaincoexistencebutalsosupporttheprioritizationofcarbohydrateutilizationbasedoncarbohydratestructure,advancingourunderstandingoftherelationshipsbetweendietandthegutmicrobiome.
Purificationandcharacterizationofα-L-arabinofuranosidasesfromGeobacillusstearothermophilusstrain12.
Sevim,E.,Bektas,K.I.,Sevim,A.,Canakci,S.,Sahin,I.&Belduz,A.O.(2017).Biologia,72(8),831-839.
LinktoArticle
ReadAbstract
Inordertocharacterizetwoα-L-arabinofuranosidases(α-L-AFases),Abf1Geo12andAbf2Geo12,producedbyGeobacillusstearothermophilusstrain12,thegenes(abf1andabf2)codingfortheseenzymeswereclonedandsequenced.Basedontheproteinsequencesimilarities,approximately57kDatwoα-L-AFaseswereassignedtotheglycosidehydrolasefamily51.Toobtainpureenzymes,theabf1andabf2geneswereclonedintopET28a+expressionvectorandrecombinantα-L-AFaseswereproducedinE.coliBL21(DE3):pLysS.Characterizationofrecombinantα-L-AFasesrevealedthatAbf1Geo12andAbf2Geo12wereactiveinabroadtemperaturerangefrom50to85°Candfrom40to80°C,respectively.Also,theAbf1Geo12wasactiveinabroadpHrangefrom5.0to9.0.TheoptimumpHandtemperatureforAbf1Geo12weredeterminedaspH6.0and65°C,respectively,whereastheoptimumpHandtemperatureforAbf2Geo12weredeterminedaspH5.5and60°C,respectively.Basedoncharacterizationstudies,itwasdeterminedthattheAbf1Geo12wasmorestablethanAbf2Geo12andpreviouslyidentifiedα-L-AFasesfromG.stearothermophilus.Usingp-nitrophenylα-L-arabinofuranosideasasubstrate,theKmandVmaxvaluesforAbf1Geo12andAbf2Geo12weredeterminedas0.31mMand290U/mgfortheformerenzymeand0.19mMand213.2U/mgforthelatterenzyme,respectively.TheactivitiesofAbf1Geo12andAbf2Geo12werestronglyinhibitedby1mMHg2+.Interestingly,Cu2+andCo2+stimulatedtheactivityofAbf1Geo12,buttheyreducedtheactivityofAbf2Geo12.TherecombinantenzymesreleasedL-arabinosefromsugarbeetarabinan,arabinobiose,arabinotriose,arabinotetraoseandarabinopentaose.Consequently,thesecharacterizedtwoenzymesmaybeusedinindustrialfieldssincetheyarestableathightemperatures.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们