Megazyme/Arabinoxylan (Rye Flour)/P-RAXY/3 grams
商品编号:
P-RAXY
品牌:
Megazyme INC
市场价:
¥3576.00
美元价:
2145.60
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityArABInoxylan(RyeFlour)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Purity~90%.Highviscosity.Ara:Xyl=38:62.Contaminants:Othersugars~3%.
Preparationofarabinoxylobiosefromryexylanusingfamily10Aspergillusaculeatusendo-1,4-β-D-xylanase.
Rantanen,H.,Virkki,L.,Tuomainen,P.,Kabel,M.,Schols,H.&Tenkanen,M.(2007).CarbohydratePolymers,68(2),350-359.
LinktoArticle
ReadAbstract
CommercialxylanasepreparationShearzyme®,whichcontainstheglycosidehydrolasefamily10endo-1,4-β-D-xylanasefromAspergillusaculeatus,wasusedtoprepareshort-chainarabinoxylo-oligosaccharides(AXOS)fromryearabinoxylan(AX).AmajorAXOSwasformedasahydrolysisproduct.LongerAXOSwerealsoproducedasminorproducts.ThepureGH10xylanasefromA.aculeatuswasusedasacomparisontoensurethattheformedAXOSwereconsequenceoftheendoxylanase‘sfunctioninsteadofsomesideenzymespresentinShearzyme.ThemajorAXOSwaspurifiedandthestructureconfirmedwithvariousanalysismethods(TLC,HPAEC-PAD,MALDI-TOF-MS,andone-andtwo-dimensionalNMRspectroscopywithnano-probe)asα-L-Araf-(1→3)-β-D-Xylp-(1→4)-D-Xylp(arabinoxylobiose).Thisisthefirstreporton13CNMRdataofpurearabinoxylobiose.Theyieldofarabinoxylobiosewas12%fromthequantifiedhydrolysisproducts.Inconclusion,GH10endoxylanasefromA.aculeatusisthusabletocutefficientlythexylosidiclinkagenexttothearabinofuranosyl-substitutedxyloseunitwhichisnottypicalforalltheGH10endoxylanases.Interestingly,pureA.aculeatusxylanaseshowednotablyactivitytowardsp-nitrophenyl-β-Dxylopyranose.InpreviouslystudieslongerAXOShavebeenproducedwithShearzymebuttheformationofshort-chainAXOSbyA.aculeatusGH10xylanasehasnotbeenstudiedbefore.
XylooligosaccharidesfromhardwoodandcerealxylansproducedbyaThermostablexylanaseascarbonsourcesforLactobacillusbrevisandBifidobacteriumadolescentis.
Falck,P.,Precha-Atsawanan,S.,Grey,C.,Immerzeel,P.,Stalbrand,H.,Adlercreutz,P.,&NordbergKarlsson,E.(2013).JournalofAgriculturalandFoodChemistry,61(30),7333-7340.
LinktoArticle
ReadAbstract
Tocomparexylansfromforestrywithagriculturalorigins,hardwoodxylan(birch)andcerealarabinoxylan(rye)werehydrolyzedusingtwovariantsofthexylanaseRmXyn10A,full-lengthenzymeandcatalyticmoduleonly,fromRhodothermusmarinus.Cultivationsoffourselectedbacterialspecies,usingthexylooligosaccharide(XOS)containinghydrolysatesascarbonsource,showedselectivegrowthofLactobacillusbrevisDSMZ1264andBifidobacteriumadolescentisATCC15703.BothstrainswereconfirmedtoutilizetheXOSfraction(DP2–5),whereasputativearabinoxylooligosaccharidesfromtheryearabinoxylanhydrolysatewereutilizedbyonlyB.adolescentis.Escherichiacolididnotgrow,despiteitscapabilitytogrowonthemonosaccharidesarabinoseandxylose.ItwasalsoshownthatPediococcusparvulusstrain2.6utilizedneitherxylosenorXOSforgrowth.Insummary,RmXyn10Aoritscatalyticmoduleprovedsuitableforhigh-temperaturehydrolysisofhardwoodxylanandcerealarabinoxylan,producingXOSthatcouldqualifyasprebioticsforuseinfunctionalfoodproducts.
Understandinghownoncatalyticcarbohydratebindingmodulescandisplayspecificityforxyloglucan.
Luís,A.S.,Venditto,I.,Temple,M.J.,Rogowski,A.,Baslé,A.,Xue,J.,Knox,J.P.,Prates,J.A.M.,Ferreira,L.M.A.,Fontes,C.M.G.A.,Najmudin,S.&Gilbert,H.J.(2013).JournalofBIOLOGicalChemistry,288(7),4799-4809.
LinktoArticle
ReadAbstract
Plantbiomassiscentraltothecarboncycleandtoenvironmentallysustainableindustriesexemplifiedbythebiofuelsector.PlantcellwalldegrADIngenzymesgenerallycontainnoncatalyticcarbohydratebindingmodules(CBMs)thatfulfilatargetingfunction,whichenhancescatalysis.CBMsthatbindβ-glucanchainsoftendisplaybroadspecificityrecognizingβ1,4-glucans(cellulose),β1,3-β1,4-mixedlinkedglucansandxyloglucan,aβ1,4-glucandecoratedwithα-1,6-xyloseresidues,bytargetingstructurescommontothethreepolysaccharides.Thus,CBMsthatrecognizexyloglucantargettheβ1,4-glucanbackboneandonlyaccommodatethexylosedecorations.HereweshowthattwocloselyrelatedCBMs,CBM65AandCBM65B,derivedfromEcCel5A,aEubacteriumcellulosolvensendoglucanase,bindtoarangeofβ-glucansbut,uniquely,displaysignificantpreferenceforxyloglucan.ThestructuresofthetwoCBMsrevealaβ-sandwichfold.Theligandbindingsitecomprisestheβ-sheetthatformstheconcavesurfaceoftheproteins.Bindingtothebackbonechainsofβ-glucansismediatedprimarilybyfivearomaticresiduesthatalsomakehydrophobicinteractionswiththexylosesidechainsofxyloglucan,conferringthedistinctivespecificityoftheCBMsforthedecoratedpolysaccharide.Significantly,andincontrasttootherCBMsthatrecognizeβ-glucans,CBM65Autilizesdifferentpolarresiduestobindcelluloseandmixedlinkedglucans.Thus,Gln106iscentraltocelluloserecognition,butisnotrequiredforbindingtomixedlinkedglucans.Thisreportrevealsthemechanismbywhichβ-glucan-specificCBMscandistinguishbetweenlinearandmixedlinkedglucans,andshowhowtheseCBMscanexploitanextensivehydrophobicplatformtotargetthesidechainsofdecoratedβ-glucans.
Peroxidase-mediatedoxidativecross-linkinganditspotentialtomodifymechanicalpropertiesinwater-solublepolysaccharideextractsandcerealgrainresidues.
Robertson,J.A.,Faulds,C.B.,Smith,A.C.&Waldron,K.W.(2008).JournalofAgriculturalandFoodChemistry,56(5),1720-1726.
LinktoArticle
ReadAbstract
Analysisofwheatbranandspentgrainshowsthatconcentrationsofferulateanddiferulatesofferconsiderablescopetomodifythecross-linkingofferuloylatedpolysaccharidesandhencethemechanicalpropertiesoftheseresidues.Insolutionferulicacid(FA)canbereadilypolymerizedbyhorseradishperoxidase,butwhenesterifiedtoapolysaccharide,theprofileofdiferulatesbecomesrestricted.ThissituationalsoexistsinmuroandsuggestsstructuralconstraintsmaylimittheavailabilityofFAforcross-linking.Atrelativelylowpolysaccharideconcentration,(~3%),stericrestrictionswereapparentingelspreparedusingisolatedpolysaccharides.Mechanicalpropertiessuchasswellingalsoappeartobefixedattheserelativelylowpolysaccharideconcentrations.Thislimitsthepotentialtomodifymechanicalpropertiesinmurothroughoxidoreductaseactivity.Tomodifymechanicalpropertiessuchtreatmentswillneedtofocusonincreasingthe“flexibility”ofthecellwallmatrixandtheaccessibilityofenzymestothecellwallmatrix.
RestorationofmatureetiolatedcucumberhypocotylcellwallsusceptibilitytoexpansinbypretreatmentwithfungalpectinasesandEGTAinvitro.
Zhao,Q.,Yuan,S.,Wang,X.,Zhang,Y.,Zhu,H.&Lu,C.(2008).PlantPhysiology,147(4),1874-1885.
LinktoArticle
ReadAbstract
Matureplantcellwallslosetheirabilitytoexpandandbecomeunresponsivetoexpansin.Thisphenomenonisbelievedtobeduetocross-linkingofhemicellulose,pectin,orphenolicgroupsinthewall.Byscreeningvarioushydrolyticenzymes,wefoundthatpretreatmentofnongrowing,heat-inactivated,basalcucumber(Cucumissativus)hypocotylswithpectinlyase(Pel1)fromAspergillusjaponicuscouldrestorereconstitutedexogenousexpansin-inducedextensioninmaturecellwallsinvitro.RecombinantpectatelyaseA(PelA)andpolygalacturonase(PG)fromAspergillusspp.exhibitedsimilarcapacitytoPel1.Pel1,PelA,andPGalsoenhancedthereconstitutedexpansin-inducedextensionoftheapical(elongating)segmentsofcucumberhypocotyls.However,theeffectiveconcentrationsofPelAandPGforenhancingthereconstitutedexpansin-inducedextensionweregreaterintheapicalsegmentsthaninthebasalsegments,whereasPel1behavedintheoppositemanner.Thesedataareconsistentwithdistributionofmoremethyl-esterifiedpectinincellwallsoftheapicalsegmentsandlessesterifiedpectininthebasalsegments.Associatedwiththedegreeofesterificationofpectin,morecalciumwasfoundincellwallsofbasalsegmentscomparedtoapicalsegments.PretreatmentofthecalciumchelatorEGTAcouldalsorestorematurecellwalls"susceptibilitytoexpansinbyremovingcalciumfrommaturecellwalls.Becauserecombinantpectinasesdonothydrolyzeotherwallpolysaccharides,andendoglucanase,xylanase,andproteasecannotrestorethematurewall"sextensibility,wecanconcludethatthepectinnetwork,especiallycalcium-pectatebridges,maybetheprimaryfactorthatdeterminescucumberhypocotylmaturecellwalls"unresponsivenesstoexpansin.
CharacterizationofXyn30AandAxh43AofBacilluslicheniformisSVD1identifiedbyitsgenomicanalysis.
Sakka,M.,Tachino,S.,Katsuzaki,H.,vanDyk,J.S.,Pletschke,B.I.,Kimura,T.&Sakka,K.(2012).EnzymeandMicrobialTechnology,51(4),193-199.
LinktoArticle
ReadAbstract
ThegenomesequenceofBacilluslicheniformisSVD1,thatproducesacellulolyticandhemi-cellulolyticmultienzymecomplex,waspartiallydetermined,indicatingthattheglycosidehydrolasesystemofthisstrainishighlysimilartothatofB.licheniformisATCC14580.Allofthefifty-sixgenesencodingglycosidehydrolasesidentifiedinB.licheniformisATCC14580wereconservedinstrainSVD1.Inaddition,twonewgenes,xyn30Aandaxh43A,wereidentifiedintheB.licheniformisSVD1genome.Thexyn30AgenewashighlysimilartoBacillussubtilissubsp.Subtilis168xynCencodingforaglucuronoarabinoxylanendo-1,4-β-xylanase.Xyn30A,producedbyarecombinantEscherichiacoli,hadhighactivitytoward4-O-methyl-D-glucurono-D-xylanbutshoweddefiniteactivitytowardoat-speltxylanandunsubstitutedxylooligosaccharides.RecombinantAxh43A,consistingofafamily-43catalyticmoduleoftheglycosidehydrolasesandafamily-6carbohydrate-bindingmodule(CBM),wasanarabinoxylanarabinofuranohydrolase(α-L-arabinofuranosidase)classifiedasAXH-m23andcapableofreleasingarabinosylresidues,whicharelinkedtotheC-2orC-3positionofsinglysubstitutedxyloseresiduesinarabinoxylanorarabinoxylanoligomers.TheisolatedCBMpolypeptidehadanaffinityforsolubleandinsolublexylansandremovaloftheCBMfromAxh43Aabolishedthecatalyticactivityoftheenzyme,indicatingthattheCBMplaysanessentialroleinhydrolysisofarabinoxylan.
Family42carbohydrate-bindingmodulesdisplaymultiplearabinoxylan-bindinginterfacespresentingdifferentligandaffinities.
Ribeiro,T.,Santos-Silva,T.,Alves,V.D.,Dias,F.M.V.,Luís,A.S.,Prates,J.A.M.,Ferraira,L.M.A.,Romao,M.J.&Fontes,C.M.G.A.(2010).BiochimicaetBiophysicaActa(BBA)-ProteinsandProteomics,1804(10),2054-2062.
LinktoArticle
ReadAbstract
Enzymesthatdegradeplantcellwallpolysaccharidesdisplayamodulararchitecturecomprisingacatalyticdomainboundtooneormorenon-catalyticcarbohydrate-bindingmodules(CBMs).CBMsdisplayconsiderablevariationinprimarystructureandaregroupedinto59sequence-basedfamiliesorganizedintheCarbohydrate-ActiveenZYme(CAZy)database.HerewereportthecrystalstructureofCtCBM42Atogetherwiththebiochemicalcharacterizationoftwoothermembersoffamily42CBMsfromClostridiumthermocellum.CtCBM42A,CtCBM42BandCtCBM42Cbindspecificallytothearabinoseside-chainsofarabinoxylansandarabinan,suggestingthatvariouscellulosomalcomponentsaretargetedtotheseregionsoftheplantcellwall.ThestructureofCtCBM42Adisplaysabeta-trefoilfold,whichcomprises3sub-domainsdesignatedasα,βandγ.Eachoneofthethreesub-domainspresentsaputativecarbohydrate-bindingpocketwhereanaspartateresiduelocatedinacentralpositiondominatesligandrecognition.Intriguingly,theγsub-domainofCtCBM42Aispivotalforarabinoxylanbinding,whiletheconcertedactionofβandγsub-domainsofCtCBM42BandCtCBM42Cisapparentlyrequiredforligandsequestration.Thus,thisworkrevealsthatthebindingmechanismofCBM42membersisincontrastwiththatofhomologousCBM13swhererecognitionofcomplexpolysaccharidesresultsfromthecooperativeactionofthreeproteinsub-domainspresentingsimilaraffinities.
CharacterizationofRuminiclostridiumjosuiarabinoxylanarabinofuranohydrolase,RjAxh43B,andRjAxh43B-containingxylanolyticcomplex.
Orita,T.,Sakka,M.,Kimura,T.&Sakka,K.(2017).EnzymeandMicrobialTechnology,104,37-43.
LinktoArticle
ReadAbstract
Anovelgene(axh43B)fromRuminiclostridiumjosuiencodingacellulosomalenzymeconsistingofacatalyticmoduleofsubfamilyGH43_10,afamily-6carbohydrate-bindingmodule,andadockerinmodule,wasexpressedusingEscherichiacoli.RjAxh43Breleasedonlyarabinosefromarabinoxylanand23,33-di-α-L-arabinofuranosylxylotriose,butnot32-α-L-arabinofuranosylxylobioseor23-α-L-arabinofuranosylxylotriose,stronglysuggestingthatRjAxh43Bisanarabinoxylanα-L-1,3-arabinofuranohydrolasecapableofcleavingα-1,3-linkedarabinoseresiduesofdoublyarabinosylatedxylan.WhenAxh43BwasmixedwiththerecombinantscaffoldingproteinRjCipAofR.josuiatamolarratioof6:1,theactivityoftheRjAxh43B-RjCipAcomplex(6:1)towardinsolublewheatarabinoxylanwassimilartothatofRjAxh43Balone,suggestingthatRjAxh43Bdoesnotshowaproximityeffect,whichisdefinedasanactivityenhancementeffectcausedbythepresenceofpluralcatalyticsubunitsadjoiningeachother.WhenRjAxh43AwasmixedwithxylanaseRjXyn10C,theyactedsynergisticallytowardinsolublewheatarabinoxylanandricestrawpowderintheabsenceofRjCipA.Furthermore,theRjAxh43B-RjXyn10C-RjCipA(3:3:3)complexhadhigheractivitytowardinsolublewheatarabinoxylanthanamixtureofRjAxh43BandRjXyn10CwithoutRjCipA,suggestingthatincorporationofaxylanaseandanα-L-arabinofuranosidaseintoacellulosomeisbeneficialformoreefficientlydegradingarabinoxylan.
Arabinoxylanasefromglycosidehydrolasefamily5isaselectiveenzymeforproductionofspecificarabinoxylooligosaccharides.
Falck,P.,Linares-Pastén,J.A.,Karlsson,E.N.&Adlercreutz,P.(2017).FoodChemistry,242,579-584.
LinktoArticle
ReadAbstract
Anarabinosespecificxylanasefromglycosidehydrolasefamily5(GH5)wasusedtohydrolysewheatandryearabinoxylan,andtheproductprofileshowedthatitproducedarabinosesubstitutedoligosaccharides(AXOS)having2-10xyloseresiduesinthemainchainbutnounsubstitutedxylooligosaccharides(XOS).Molecularmodellingshowedthattheactivesitehasanopenstructureandthatthehydroxylgroupsofallxyloseresiduesintheactivesitearesolventexposed,indicatingthatarabinosesubstituentscanbeaccommodatedintheglyconeaswellastheaglyconesubsites.ThearabinoxylanhydrolysatesobtainedwiththeGH5enzymestimulatedgrowthofBifidobacteriumadolescentisbutnotofLactobacillusbrevis.Thisarabinoxylanaseisthusagoodtoolfortheproductionofselectiveprebiotics.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们