Megazyme/阿拉伯木聚糖(小麦粉;中等粘度~30 cSt)/P-WAXYM/3克
商品编号:
P-WAXYM
品牌:
Megazyme INC
市场价:
¥3576.00
美元价:
2145.60
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityArABInoxylan(WheatFlour;MediumViscosity~30CST)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Purity~95%.Viscosity~30cSt.Recommendedsubstrateforviscometricandreducing-sugarassaysofendo-β-D-xylanaseactivity.Ara:Xyl=38:62.Glucose,galactoseandmannose<1%.
Novelsubstratesfortheautomatedandmanualassayofendo-1,4-β-xylanase.
Mangan,D.,Cornaggia,C.,Liadova,A.,McCormack,N.,Ivory,R.,McKie,V.A.,Ormerod,A.&McCleary,D.V.(2017).CarbohydrateResearch,445,14-22.
LinktoArticle
ReadAbstract
endo-1,4-β-Xylanase(EC3.2.1.8)isemployedacrossabroadrangeofindustriesincludinganimalfeed,brewing,baking,biofuels,detergentsandpulp(paper).Despiteitsimportance,arapid,reliable,reproducIBLe,automatableassayforthisenzymethatisbasedontheuseofachemicallydefinedsubstratehasnotbeendescribedtodate.Reportedhereinisanewenzymecoupledassayprocedure,termedtheXylX6assay,thatemploysanovelsubstrate,namely4,6-O-(3-ketobutylidene)-4-nitrophenyl-β-45-O-glucosyl-xylopentaoside.ThedevelopmentofthesubstrateandassociatedassayisdiscussedhereandtherelationshipbetweentheactivityvaluesobtainedwiththeXylX6assayversustrADItionalreducingsugarassaysanditsspecificityandreproducibilitywerethoroughlyinvestigated.
Hydrolysisofwheatflourarabinoxylan,acid-debranchedwheatflourarabinoxylanandarabino-xylo-oligosaccharidesbyβ-xylanase,α-L-arabinofuranosidaseandβ-xylosidase.
McCleary,B.V.,McKie,V.A.,Draga,A.,Rooney,E.,Mangan,D.&Larkin,J.(2015).CarbohydrateResearch,407,79-96.
LinktoArticle
ReadAbstract
Arangeofα-L-arabinofuranosyl-(1-4)-β-D-xylo-oligosaccharides(AXOS)wereproducedbyhydrolysisofwheatflourarabinoxylan(WAX)andaciddebranchedarabinoxylan(ADWAX),inthepresenceandabsenceofanAXH-d3α-L-arabinofuranosidase,byseveralGH10andGH11β-xylanases.ThestructuresoftheoligosaccharideswerecharacterisedbyGC-MSandNMRandbyhydrolysisbyarangeofα-L-arabinofuranosidasesandβ-xylosidase.TheAXOSwerepurifiedandusedtocharacterisetheactionpatternsofthespecificα-L-arabinofuranosidases.Theseenzymes,incombinationwitheitherCellvibriomixtusorNeocallimastixpatriciarumβ-xylanase,wereusedtoproduceelevatedlevelsofspecificAXOSonhydrolysisofWAX,suchas32-α-L-Araf-(1-4)-β-D-xylobiose(A3X),23-α-L-Araf-(1-4)-β-D-xylotriose(A2XX),33-α-L-Araf-(1-4)-β-D-xylotriose(A3XX),22-α-L-Araf-(1-4)-β-D-xylotriose(XA2X),32-α-L-Araf(1-4)-β-D-xylotriose(XA3X),23-α-L-Araf-(1-4)-β-D-xylotetraose(XA2XX),33-α-L-Araf-(1-4)-β-D-xylotetraose(XA3XX),23,33-di-α-L-Araf-(1-4)-β-D-xylotriose(A2+3XX),23,33-di-α-L-Araf-(1-4)-β-D-xylotetraose(XA2+3XX),24,34-di-α-L-Araf-(1-4)-β-D-xylopentaose(XA2+3XXX)and33,34-di-α-L-Araf-(1-4)-β-D-xylopentaose(XA3A3XX),manyofwhichhavenotpreviouslybeenproducedinsufficientquantitiestoallowtheiruseassubstratesinfurtherenzymicstudies.ForA2,3XX,yieldsofapproximately16%ofthestartingmaterial(wheatarabinoxylan)havebeenachieved.Mixturesoftheα-L-arabinofuranosidases,withspecificactiononAXOS,havebeencombinedwithβ-xylosidaseandβ-xylanasetoobtainanoptimalmixtureforhydrolysisofarabinoxylantoL-arabinoseandD-xylose.
AComparisonofPolysaccharideSubstratesandReducingSugarMethodsfortheMeasurementofendo-1,4-β-Xylanase
McCleary,B.V.&McGeough,P.(2015).Appl.Biochem.Biotechnol.,177(5),1152-1163.
LinktoArticle
ReadAbstract
Themostcommonlyusedmethodforthemeasurementofthelevelofendo-xylanaseincommercialenzymepreparationsisthe3,5-dinitrosalicylicacid(DNS)reducingsugarmethodwithbirchwoodxylanassubstrate.ItiswellknownthatwiththeDNSmethod,muchhigherenzymeactivityvaluesareobtainedthanwiththeNelson-Somogyi(NS)reducingsugarmethod.Inthispaper,wehavecomparedtheDNSandNSreducingsugarassaysusingarangeofxylan-typesubstratesandaccuratelycomparedthemolarresponsefactorsforxyloseandarangeofxylo-oligosaccharides.Purifiedbeechwoodxylanorwheatarabinoxylanisshowntobeasuitablereplacementforbirchwoodxylanwhichisnolongercommerciallyavailable,anditisclearlydemonstratedthattheDNSmethodgrosslyoverestimatesendo-xylanaseactivity.UnliketheDNSassay,theNSassaygavetheequivalentcolourresponsewithequimolaramountsofxylose,xylobiose,xylotrioseandxylotetraosedemonstratingthatitaccuratelymeasuresthequantityofglycosidicbondscleavedbytheendo-xylanase.TheauthorsstronglyrecommendcessationoftheuseoftheDNSassayformeasurementofendo-xylanaseduetothefactthatthevaluesobtainedaregrosslyoverestimatedduetosecondaryreactionsincolourdevelopment.
WaterextractofTriticumaestivumL.anditscomponentsdemonstrateprotectiveeffectinamodelofvasculardementia.
Han,H.S.,Jang,J.H.,Jang,J.H.,Choi,J.S.,Kim,Y.J.,Lee,C.,Lim,S.H.,Lee,H.K.&Lee,J.(2010).JournalofMedicinalFood,13(3),572-578.
LinktoArticle
ReadAbstract
Althoughvasculardementiaisthesecondleadingcauseofdementiaandoftenunderdiagnosed,therearenodrugsyetapprovedforthetreatmentofvasculardementia.Inthisstudy,itisdemonstratedthatwaterextractofTriticumaestivumL.(TALE)andsomeofitscomponentshaveprotectiveeffectsagainstvasculardementia-induceddamagebypreservingthemyelinsheathandinhibitingastrocyticactivation.Thememorytestusedavasculardementiamodelutilizingbilateralligationofthecarotidarteriesofrats.TALE,someofitscomponents,suchasstarch,totaldietaryfiber(TDF),arabinoxylan,β-glucan,anddegradedproductsofarabinoxylan,suchasarabinoseandxylose,wereadmiNISTeredtotheanimalsfromday8today14,followingthesurgery.Twenty-onedaysafterthesurgery,thewatermazetestwasperformedfor5days,andthetimetakentofindtheplatformduringtrainingtrials(meanescapelatency)wasmeasured.ThemeanescapelatencywasdecreasedconsistentlyintheTALE-,starch-,TDF-,arabinoxylan-,andarabinose-treatedgroups,comparedwiththatinthevasculardementiagroup.Tomeasurebraindamage,Luxolfastbluestainingandimmunohistochemistryofmyelinbasicprotein(MBP)wereperformedtoobservemyelinsheathinthewhitematter,andimmunohistochemistryofglialfibrillaryacidicprotein(GFAP)wasperformedtoobservetheastrocyticreaction.VasculardementiareducedtheMBPlevelandincreasedtheGFAPlevel.ArabinoseeffectivelyinhibitedtheMBPandGFAPchange,whereasarabinoxylaninhibitedtheGFAPchangeonly.TheseresultssuggestthatTALEandsomeofitscomponentscanbeusedasamedicinalmaterialforthedevelopmentofneuroprotectiveagentsagainstvasculardementia.
Substituent-specificantibodyagainstglucuronoxylanrevealscloseassociationofglucuronicacidandacetylsubstituentsanddistinctlabelingpatternsintreespecies.
Koutaniemi,S.,Guillon,F.,Tranquet,O.,Bouchet,B.,Tuomainen,P.,Virkki,L.,Petersen,H.L.,Willats,W.G.T.,Saulnier,L.&Tenkanen,M.(2012).Planta,236(2),739-751.
LinktoArticle
ReadAbstract
Immunolabelingcanbeusedtolocateplantcellwallcarbohydratesorothercomponentstospecificcelltypesortospecificregionsofthewall.Someantibodiesagainstxylansexist;however,manypartlyreactwiththexylanbackboneandthusprovidelimitedinformationonthetypeofsubstituentspresentinvariousxylans.Wehaveproducedamonoclonalantibodywhichspecificallyrecognizesglucopyranosyluronicacid(GlcA),orits4-O-methylether(meGlcA),substituentsinxylanandhasnocross-reactivitywithlinearorarabinofuranosyl-substitutedxylans.TheUX1antibodybindsmoststronglyto(me)GlcAsubstitutionsatthenon-reducingendsofxylanchains,buthasalowcross-reactivitywithinternalsubstitutionsaswell,atleastonoligosaccharides.Theantibodylabeledplantcellwallsfrombothmono-anddicotyledons,butinmosttissuesanalkalinepretreatmentwasneededforantibodybinding.Thetreatmentremovedacetylgroupsfromxylan,indicatingthatthevicinityofglucuronicacidsubstituentsisalsoacetylated.Thenovellabelingpatternsobservedinthexylemoftreespeciessuggestedthatdifferenceswithinthecellwallexistbothinacetylationdegreeandinglucuronicacidcontent.
CharacterizationofXyn30AandAxh43AofBacilluslicheniformisSVD1identifiedbyitsgenomicanalysis.
Sakka,M.,Tachino,S.,Katsuzaki,H.,vanDyk,J.S.,Pletschke,B.I.,Kimura,T.&Sakka,K.(2012).EnzymeandMicrobialTechnology,51(4),193-199.
LinktoArticle
ReadAbstract
ThegenomesequenceofBacilluslicheniformisSVD1,thatproducesacellulolyticandhemi-cellulolyticmultienzymecomplex,waspartiallydetermined,indicatingthattheglycosidehydrolasesystemofthisstrainishighlysimilartothatofB.licheniformisATCC14580.Allofthefifty-sixgenesencodingglycosidehydrolasesidentifiedinB.licheniformisATCC14580wereconservedinstrainSVD1.Inaddition,twonewgenes,xyn30Aandaxh43A,wereidentifiedintheB.licheniformisSVD1genome.Thexyn30AgenewashighlysimilartoBacillussubtilissubsp.Subtilis168xynCencodingforaglucuronoarabinoxylanendo-1,4-β-xylanase.Xyn30A,producedbyarecombinantEscherichiacoli,hadhighactivitytoward4-O-methyl-D-glucurono-D-xylanbutshoweddefiniteactivitytowardoat-speltxylanandunsubstitutedxylooligosaccharides.RecombinantAxh43A,consistingofafamily-43catalyticmoduleoftheglycosidehydrolasesandafamily-6carbohydrate-bindingmodule(CBM),wasanarabinoxylanarabinofuranohydrolase(α-L-arabinofuranosidase)classifiedasAXH-m23andcapableofreleasingarabinosylresidues,whicharelinkedtotheC-2orC-3positionofsinglysubstitutedxyloseresiduesinarabinoxylanorarabinoxylanoligomers.TheisolatedCBMpolypeptidehadanaffinityforsolubleandinsolublexylansandremovaloftheCBMfromAxh43Aabolishedthecatalyticactivityoftheenzyme,indicatingthattheCBMplaysanessentialroleinhydrolysisofarabinoxylan.
Understandinghownoncatalyticcarbohydratebindingmodulescandisplayspecificityforxyloglucan.
Luís,A.S.,Venditto,I.,Temple,M.J.,Rogowski,A.,Baslé,A.,Xue,J.,Knox,J.P.,Prates,J.A.M.,Ferreira,L.M.A.,Fontes,C.M.G.A.,Najmudin,S.&Gilbert,H.J.(2013).JournalofBIOLOGicalChemistry,288(7),4799-4809.
LinktoArticle
ReadAbstract
Plantbiomassiscentraltothecarboncycleandtoenvironmentallysustainableindustriesexemplifiedbythebiofuelsector.Plantcellwalldegradingenzymesgenerallycontainnoncatalyticcarbohydratebindingmodules(CBMs)thatfulfilatargetingfunction,whichenhancescatalysis.CBMsthatbindβ-glucanchainsoftendisplaybroadspecificityrecognizingβ1,4-glucans(cellulose),β1,3-β1,4-mixedlinkedglucansandxyloglucan,aβ1,4-glucandecoratedwithα-1,6-xyloseresidues,bytargetingstructurescommontothethreepolysaccharides.Thus,CBMsthatrecognizexyloglucantargettheβ1,4-glucanbackboneandonlyaccommodatethexylosedecorations.HereweshowthattwocloselyrelatedCBMs,CBM65AandCBM65B,derivedfromEcCel5A,aEubacteriumcellulosolvensendoglucanase,bindtoarangeofβ-glucansbut,uniquely,displaysignificantpreferenceforxyloglucan.ThestructuresofthetwoCBMsrevealaβ-sandwichfold.Theligandbindingsitecomprisestheβ-sheetthatformstheconcavesurfaceoftheproteins.Bindingtothebackbonechainsofβ-glucansismediatedprimarilybyfivearomaticresiduesthatalsomakehydrophobicinteractionswiththexylosesidechainsofxyloglucan,conferringthedistinctivespecificityoftheCBMsforthedecoratedpolysaccharide.Significantly,andincontrasttootherCBMsthatrecognizeβ-glucans,CBM65Autilizesdifferentpolarresiduestobindcelluloseandmixedlinkedglucans.Thus,Gln106iscentraltocelluloserecognition,butisnotrequiredforbindingtomixedlinkedglucans.Thisreportrevealsthemechanismbywhichβ-glucan-specificCBMscandistinguishbetweenlinearandmixedlinkedglucans,andshowhowtheseCBMscanexploitanextensivehydrophobicplatformtotargetthesidechainsofdecoratedβ-glucans.
Peroxidase-mediatedoxidativecross-linkinganditspotentialtomodifymechanicalpropertiesinwater-solublepolysaccharideextractsandcerealgrainresidues.
Robertson,J.A.,Faulds,C.B.,Smith,A.C.&Waldron,K.W.(2008).JournalofAgriculturalandFoodChemistry,56(5),1720-1726.
LinktoArticle
ReadAbstract
Analysisofwheatbranandspentgrainshowsthatconcentrationsofferulateanddiferulatesofferconsiderablescopetomodifythecross-linkingofferuloylatedpolysaccharidesandhencethemechanicalpropertiesoftheseresidues.Insolutionferulicacid(FA)canbereadilypolymerizedbyhorseradishperoxidase,butwhenesterifiedtoapolysaccharide,theprofileofdiferulatesbecomesrestricted.ThissituationalsoexistsinmuroandsuggestsstructuralconstraintsmaylimittheavailabilityofFAforcross-linking.Atrelativelylowpolysaccharideconcentration,(~3%),stericrestrictionswereapparentingelspreparedusingisolatedpolysaccharides.Mechanicalpropertiessuchasswellingalsoappeartobefixedattheserelativelylowpolysaccharideconcentrations.Thislimitsthepotentialtomodifymechanicalpropertiesinmurothroughoxidoreductaseactivity.Tomodifymechanicalpropertiessuchtreatmentswillneedtofocusonincreasingthe“flexibility”ofthecellwallmatrixandtheaccessibilityofenzymestothecellwallmatrix.
AThermo-halo-tolerantandproteinase-resistantendoxylanasefromBacillussp.HJ14.
Zhou,J.,Wu,Q.,Zhang,R.,Mo,M.,Tang,X.,Li,J.,Xu,B.,Ding,J.,Lu,Q.&Huang,Z.(2014).FoliaMicrobiologica,59(5),423-431.
LinktoArticle
ReadAbstract
Aglycosylhydrolasefamily10endoxylanasefromBacillussp.HJ14wasgroupedinaseparatedclusterwithanothersixBacillusendoxylanaseswhichhavenotbeencharacterized.TheseBacillusendoxylanasesshowedlessthan52%aminoacidsequenceidentitywithotherendoxylanasesandfardistancewithendoxylanasesfrommostmicroorganisms.Signalpeptidewasnotdetectedintheendoxylanase.TheendoxylanasewasexpressedinEscherichiacoliBL21(DE3),andthepurifiedrecombinantenzyme(rXynAHJ14)wascharacterized.rXynAHJ14wasapparentoptimalat62.5°CandpH6.5andretainedmorethan55%ofthemaximumactivitywhenassayedat40–75°C,23%at20°C,16%at85°C,andeven8%at0°C.Half-livesoftheenzymeweremorethan60min,approximately25and4minat70,75,and80°C,respectively.Theenzymeexhibitedmorethan62%xylanaseactivityandstabilityattheconcentrationof3–30%(w/v)NaCl.NoxylanaseactivitywaslostafterincubationofthepurifiedrXynAHJ14withtrypsinandproteinaseKat37°Cfor60min.Differentcomponentsofoligosaccharidesweredetectedinthetime-coursehydrolysisofbeechwoodxylanbytheenzyme.Duringthesimulatedintestinaldigestionphaseinvitro,11.5–19.0,15.3–19.0,21.9–27.7,and28.2–31.2µmol/mLreducingsugarwerereleasedbythepurifiedrXynAHJ14fromsoybeanmeal,wheatbran,beechwoodxylan,andrapeseedmeal,respectively.Theendoxylanasemightbeanalternativeforpotentialapplicationsintheprocessingofseafoodandsalinefoodandinaquacultureasagastricfishfeedadditive.
Invitrofermentationkineticsandend-productsofcerealarabinoxylansand(1,3;1,4)-β-glucansbyporcinefaeces.
Williams,B.A.,Mikkelsen,D.,LePaih,L.&Gidley,M.J.(2011).Journalofcerealscience,53(1),53-58.
LinktoArticle
ReadAbstract
Purifiedandsemi-purifiedpolysaccharidescharacteristicofcerealswerefermentedinvitrowithapigfaecalinoculum,usingthecumulativegasproductiontechnique,toexaminethekineticsandend-productsoffermentationafter48h.Itwasshownthatarabinoxylanandmixedlinkage(1,3;1,4)β-glucanwererapidlyfermentedifsoluble,whilelesssolublesubstrates(insolublearabinoxylan,maizeandwheatstarchgranules,andbacterialcellulose)weremoreslowlyfermented.Relevantmonosaccharideswerefermentedatverysimilarratestosolublepolymericarabinoxylanandβ-glucan,showingthatdepolymerisationwasnotalimitingstep,incontrasttosomepreviousstudies.Bacterialcelluloseisshowntobeausefulmodelsubstrateforfermentationofplantcellulosewhichisdifficulttoobtainwithoutharshchemicaltreatments.Fermentationend-productswererelatedtokinetics,withslowcarbohydratefermentationresultinginincreasedproteinfermentation.Ratiosofshort-chainfattyacidproductsweresimilarforallarabinoxylanandβ-glucansubstrates.
Theuseofβ-xylanaseforincreasingtheefficiencyofbiocatalyticconversionofcropresiduestobioethanol.
Juodeikiene,G.,Basinskiene,L.,Vidmantiene,D.,Makaravicius,T.,Bartkiene,E.&Schols,H.(2011).CatalysisToday,167(1),113-121.
LinktoArticle
ReadAbstract
Proteinaceousinhibitorsofxylanasenaturallyoccurincerealswheretheyareinvolvedinvariousrolesintheplantdefencemetabolism.Thisstudyfocusedontheinhibitorsofxylanasepresentinlocalryecultivars,andtheirinfluenceontheefficiencyofthefermentationprocessesduringbioethanolproductionfromryeresiduesincomparisonwithcommonwheat.DifferentoriginxylanasesfromThermomyceslanuginosusandTrichodermareeseiweretheobjectsoftheinvestigations.KineticstudiesofthesexylanasesinthepresenceofproteinswithinhibitoryactivityindicatedthatTh.lanuginosuswasfoundmoresensitivetoproteinaceousxylanaseinhibitorspresentedinryethanT.reesei.ThehighestyieldofxyloseandarabinosewasachievedbyaddingT.reeseitocellwallsubstrates,whileTh.lanuginosusconvertedtoarabinoxylansonlyintoxylooligosaccharidesandmonosaccharidewerenotreleased.Theactivityofxylanaseincompositionwithα-amylaseandglucoamylasewasselectedtoachieveahigherethanolyieldinthedistillate.Itimprovedthequalityofbioethanolbyincreasingthecontentofethanolanddecreasingtheconcentrationsofpropanol,isobutanol,isoamylandamylalcoholsandthemethanolconcentration.Nosignificantdifferenceswerefoundbetweenthecontentsofethanolfromdifferenttypeofbran.
DirectconversionofxylantoethanolbyrecombinantSaccharomycescerevisiaestrainsdisplayinganengineeredminihemicellulosome.
Sun,J.,Wen,F.,Si,T.,Xu,J.H.&Zhao,H.(2012).AppliedandEnvironmentalMicrobiology,78(11),3837-3845.
LinktoArticle
ReadAbstract
Arabinoxylanisaheteropolymericchainofaβ-1,4-linkedxylosebackbonesubstitutedwitharabinoseresidues,representingaprincipalcomponentofplantcellwalls.HerewedevelopedrecombinantSaccharomycescerevisiaestrainsaswhole-cellbiocatalystscapableofcombininghemicellulaseproduction,xylanhydrolysis,andhydrolysatefermentationintoasinglestep.Thesestrainsdisplayedaseriesofuni-,bi-,andtrifunctionalminihemicellulosomesthatconsistedofaminiscaffoldin(CipA3/CipA1)anduptothreechimericenzymes.TheminiscaffoldinderivedfromClostridiumthermocellumcontainedoneorthreecohesinmodulesandwastetheredtothecellsurfacethroughtheS.cerevisiaea-agglutininadhesionreceptor.Uptothreetypesofhemicellulases,anendoxylanase(XynII),anarabinofuranosidase(AbfB),andaβ-xylosidase(XlnD),eachbearingaC-terminaldockerin,wereassembledontotheminiscaffoldinbyhigh-affinitycohesin-dockerininteractions.Comparedtouni-andbifunctionalminihemicellulosomes,theresultingquaternarytrifunctionalcomplexesexhibitedanenhancedrateofhydrolysisofarabinoxylan.Furthermore,withanintegratedD-xylose-utilizingpathway,therecombinantyeastdisplayingthebifunctionalminihemicellulosomeCipA3-XynII-XlnDcouldsimultaneouslyhydrolyzeandfermentbirchwoodxylantoethanolwithayieldof0.31gpergofsugarconsumed.
Adsorptionofarabinoxylanoncellulosicsurfaces:influenceofdegreeofsubstitutionandsubstitutionpatternonadsorptioncharacteristics.
Köhnke,T.,Östlund,Å.&Brelid,H.(2011).Biomacromolecules,12(7),2633-2641.
LinktoArticle
ReadAbstract
Thisstudypresentsresultsthatshowthatthefinestructureofarabinoxylanaffectsitsinteractionwithcellulosicsurfaces,animportantunderstandingwhendesigningandevaluatingpropertiesofxylan–cellulose-basedmaterials.Arabinoxylansamples,withwell-definedstructures,werepreparedfromawheatflourarabinoxylanwithtargetedenzymatichydrolysis.TurbiditymeasurementsandanalysesusingNMRdiffusometryshowedthatthesolubilityandthehydrodynamicpropertiesofarabinoxylanaredeterminednotonlybythedegreeofsubstitutionbutalsobythesubstitutionpattern.Onthebasisofresultsobtainedfromadsorptionexperimentsonmicrocrystallinecelluloseparticlesandoncellulosicmodelsurfacesinvestigatedwithquartzcrystalmicrobalancewithdissipationmonitoring,itwasalsofoundthatarabinoxylanadsorbsirreversiblyoncellulosicsurfacesandthattheadsorptioncharacteristics,aswellasthepropertiesoftheadsorbedlayer,arecontrolledbythefinestructureofthexylanmolecule.
Bindingselectivityofdietarypolyphenolstodifferentplantcellwallcomponents:quantificationandmechanism.
Phan,A.D.T.,Flanagan,B.M.,D"Arcy,B.R.&Gidley,M.J.(2017).FoodChemistry,233,216-227.
LinktoArticle
ReadAbstract
Selectedpolyphenolsexhibitedbindingselectivitytodifferentcellulose-basedcompositesandapplecellwalls.Forcatechin,celluloseisthedominantbindingcomponent,whereashemicelluloses(xyloglucanandarabinoxylan)apparentlydidnotcontributetopolyphenoladsorptioninthepresenceofcellulose.Incontrast,ferulicacidandcyanidin-3-glucosideboundtocellulose-basedcompositesandapplecellwallswithdifferentaffinities,showingthatbothelectrostaticinteractionsandplantcellwallmicrostructurewereimportant.Negatively-chargedpectin-containingcellwallsexhibitedthemostextensivebindingofpositively-chargedcyanidin-3-glucoside,andboundnegatively-chargedferulicacidleasteffectively.Langmuirbindingisothermspredictedthemaximumamountofadsorbedpolyphenolstobeintherangeof30–150%plantcellwallmass.NMRandCLSManalysissupporttheinteractionsbetweenpolyphenolsandplantcellwallsandshowthatalthoughpolyphenolsareassociatedwithplantcellwallsunderhydratedconditions,theyarenotimmobilisedonpolymersurfaces.
EffectofWater-ExtractableArabinoxylansfromWheatAleuroneandBranonLipidPeroxidationandFactorsInfluencingtheirAntioxidantCapacity.
Malunga,L.N.,Izydorczyk,M.&Beta,T.(2017).BioactiveCarbohydratesandDietaryFibre,10,20-26.
LinktoArticle
ReadAbstract
Dietarylipidhydroperoxides(LOOH)areimplicatedintheriseofcoloncancers.Weinvestigatedtheeffectofwater-extractablearabinoxylans(WEAX)onlipidperoxidationundersimulatedgastricconditions.Water-extractablefractionscontainingmostlyarabinoxylanswereisolatedfromwheataleuroneandwheatbranandfractionatedbystepwiseprecipitationwith(NH4)2SO4at50and75%saturation.LOOHconcentration(121.2±3.8 µM/g)ofgrilledchickenbreastmuscleincreasedby30%;however,itremainedunalteredordecreased(≤35%)dependingontypeandconcentrationofWEAXfractions.AntioxidantcapacityofWEAXfractionsbasedonDPPH,ABTSandORACwas28.2–147.9,91.2–355.3,and185.9–527.5 µMTE/g,respectively.ThecontentofferulicacidresiduesinWEAXfractions(R=0.99)andrelativeproportionsofmonosubstitutedxyloseresidues(R=0.80)influencedtheantioxidantcapacity.ConsumptionofdietsrichinferuloylatedWEAXmayofferprotectionagainstoxidativedamageinthegastrointestinaltract.
Applicationofcarbohydratearrayscoupledwithmassspectrometrytodetectactivityofplant-polysaccharidedegradativeenzymesfromthefungusAspergillusniger.
vanMunster,J.M.,Thomas,B.,Riese,M.,Davis,A.L.,Gray,C.J.,Archer,D.B.&Flitsch,S.L.(2017).ScientificReports,7.
LinktoArticle
ReadAbstract
Renewables-basedbiotechnologydependsonenzymestodegradeplantlignocellulosetosimplesugarsthatareconvertedtofuelsorhigh-valueproducts.Identificationandcharacterizationofsuchlignocellulosedegradativeenzymescouldbefast-trackedbyavailabilityofanenzymeactivitymeasurementmethodthatisfast,label-free,usesminimalresourcesandallowsdirectidentificationofgeneratedproducts.WedevelopedsuchamethodbyapplyingcarbohydratearrayscoupledwithMALDI-ToFmassspectrometrytoidentifyreactionproductsofcarbohydrateactiveenzymes(CAZymes)ofthefilamentousfungusAspergillusniger.Wedescribetheproductionandcharacterizationofplantpolysaccharide-derivedoligosaccharidesandtheirattachmenttohydrophobicself-assemblingmonolayersonagoldtarget.Weverifyeffectivenessofthisarrayfordetectingexo-andendo-actingglycosidehydrolaseactivityusingcommercialenzymes,anddemonstratehowthisplatformissuitablefordetectionofenzymeactivityinrelevantbiologicalsamples,theculturefiltrateofA.nigergrownonwheatstraw.Inconclusion,thisversatilemethodisbroadlyapplicableinscreeningandcharacterisationofactivityofCAZymes,suchasfungalenzymesforplantlignocellulosedegradationwithrelevancetobiotechnologicalapplicationsasbiofuelproduction,thefoodandanimalfeedindustry.
Multi-scalecharacterisationofdeuteratedcellulosecompositehydrogelsrevealsevidencefordifferentinteractionmechanismswitharabinoxylan,mixed-linkageglucanandxyloglucan.
Martínez-Sanz,M.,Mikkelsen,D.,Flanagan,B.M.,Gidley,M.J.&Gilbert,E.P.(2017).Polymer,124,1-11.
LinktoArticle
ReadAbstract
Theinteractionsofcellulosewithothermajorplantcellwallpolysaccharides-arabinoxylan(AX),xyloglucan(XG)andmixedlinkageglucans(MLG)-havebeeninvestigatedbycharacterisingthearchitectureofcompositedeuteratedcellulosehydrogelsbymeansofSAXSandSANS,combinedwithXRD,NMRandmicroscopy.Theresultsindicatethatcellulose-AXinteractions,limitedtotheribbons"surface,takeplaceviaanon-specificadsorptionmechanism.Incontrast,XGandMLGinteractspecificallywithcellulose,formingtwodifferentfractions:(i)interfibrillardomainsinteractingwiththecellulosemicrofibrilsand(ii)surfacedomains,responsibleforthecross-linkingofribbons.XGco-crystalliseswithcellulose,promotingtheformationofIβ-richermicrofibrilsandformingintercalatedamorphousregions.Ontheotherhand,MLGinteractswithcelluloseformingaparacrystallinecoatinglayer.ThisstructuralroleofXGandMLGinpreventingmicrofibrilaggregationmayhelpexplaintheirkeyfunctioninthecellexpansionprocessofgrowingplanttissues.
Removalofligninfromstrawspentpulpingliquorusingsyntheticcationicandbiobasedflocculants.
Piazza,G.J.,Lora,J.H.,Wayman,L.I.&Garcia,R.A.(2017).SeparationandPurificationTechnology,188,348-357.
LinktoArticle
ReadAbstract
Thespentpulpingliquor(SPL)obtainedfromstrawprocessedbysoda(alkaline)pulpingcontainsdissolvednon-sulfonatedlignin.ThelignincanbeseparatedfromSPLusingacidorcationicflocculantswhicharepotentiallyhazardoustotheenvironment.Inthisstudy,theperformanceofthebiobasedproteinflocculanthemoglobin(HEM)withandwithoutaddedcalciumchloridewascomparedwiththatofahighchargedensitysyntheticcationicflocculant,poly(diallyldimethylammoniumchlorides)(pDADMAC).Turbiditymeasurementsgaveoverlybroadconcentrationrangesforoptimalligninremovalwhichmayberelatedtothemechanismofflocculationwhichrequiresseveralmajorsteps:Conversionofdissolvedlignintoparticulatelignin,formationofparticulateligninflocs,andsubsequentsedimentationoftheseflocs.Anoptimalflocculantconcentrationorconcentrationrangewasestimatedusingthethreemethods:averageZetapotentialcorrespondingtothelowestturbidityrange;anovelmethodusingthemaximumpercentpelletmasscalculatedusingthedriedmassesofthepelletandsupernatantaftercentrifugation;measurementofsupernatantligninusingspectroscopy.HEMlightabsorptioninterferedwithspectroscopiclignindetermination,andamethodforcorrectingthemeasurementswasdevised.ThisstudyshowsthatHEMisaneffectiveflocculantfornonsulfonatedlignininSPL.TheHEM-lignincomplexisapotentialhighproteincomponentofanimalfeed.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们