Megazyme/&beta-葡聚糖(大麦;高粘度)/P-BGBH/5克
商品编号:
P-BGBH
品牌:
Megazyme INC
市场价:
¥6504.00
美元价:
3902.40
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
Highpurityβ-Glucan(Barley;HighViscosity)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Purity>94%.Highviscosityβ-Glucanfrombarleyflour.Viscosity>100CST.
Enzymicquantificationof(1→3)(1→4)-β-D-glucaninbarleyandmalt.
McCleary,B.V.&Glennie-Holmes,M.(1985).JournaloftheInstituteofBrewing,91(5),285-295.
LinktoArticle
ReadAbstract
Asimpleandquantitativemethodforthedeterminationof(1→3)(1→4)-β-D-glucaninbarleyflourandmaltisdescribed.Themethodallowsdirectanalysisofβ-glucaninflourandmaltslurries.Mixed-linkageβ-glucanisspecificallydepolymerizedwithahighlypurified(1→3)(1→4)-β-D-glucanase(lichenase),fromBacillussubtilis,totri-,tetra-andhigherdegreeofpolymerization(d.p.)oligosaccharides.Theseoligosaccharidesarethenspecificallyandquantitativelyhydrolysedtoglucoseusingpurifiedβ-D-glucosidase.Theglucoseisthenspecificallydeterminedusingglucoseoxidase/peroxidasereagent.Sincebarleyflourscontainonlylowlevelsofglucose,andmaltosaccharidesdonotinterferewiththeassay,removaloflowd.p.sugarsisnotnecessary.Blankvaluesaredeterminedforeachsampleallowingthedirectmeasurementofβ-glucaninmaltsamples.α-Amylasedoesnotinterferewiththeassay.Themethodissuitablefortheroutineanalysisofβ-glucaninbarleysamplesderivedfrombreedingprograms;50samplescanbeanalysedbyasingleoperatorinaday.Evaluationofthetechniqueondifferentdayshasindicatedameanstandarderrorof0–1forbarleyfloursamplescontaining3–8and4–6%(w/w)β-glucancontent.
Measurementof(1→3)(1→4)-β-D-glucaninmalt,wortandbeer.
McCleary,B.V.&Nurthen,E.(1986).JournaloftheInstituteofBrewing,92(2),168-173.
LinktoArticle
ReadAbstract
Amethoddevelopedforthequantificationof(1→3)(1→4)-β-D-glucaninbarleyflourhasbeenmodifiedtoallowitsuseinthemeasurementofthiscomponentinmalt,wort,beerandspentgrain.Formaltsamples,freeD-glucosewasfirstremovedwithaqueousethanol.Quantificationofthepolymerinwortandbeersamplesinvolvedprecipitationoftheβ-glucanwithammoniumsulphatefollowedbywashingwithaqueousethanoltoremovefreeD-glucose.Spentgrainwaslyophilisedandmilledandthenanalysedbythemethoddevelopedformalt.Inallcases,theβ-glucanwasdepolymerisedwithlichenaseandtheresultantβ-gluco-oligosaccharideshydrolysedtoD-glucosewithβ-D-glucosidase.ThereleasedD-glucosewasthenspecificallydeterminedusingglucoseoxidase-peroxidasereagent.
Enzymichydrolysisandindustrialimportanceofbarleyβ-glucansandwheatflourpentosans.
McCleary,B.V.,Gibson,T.S.,Allen,H.&Gams,T.C.(1986).Starch-Starke,38(12),433-437.
LinktoArticle
ReadAbstract
Mixedlinkageβ-glucaneandpentosanes(mainlyarABInoxylanes)arethemajorendospermcell-wallpolysaccharidesofbarleyandwheatrespectively.Thesepolysaccharides,althoughminorcomponentsofthewholegrain,significantlyaffecttheindustrialutilizationofthesecereals.Themodificationofbarleycornsduringmaltingrequiresthedissolutionoftheβ-glucaneinthecell-wallofthestarchendosperm.Highβ-glucaneconcentrationinwortandbeereffecttherateoffiltrationandcanalsoleadtoprecipitateorgelformationinthefinalproduct.Inasimilarmanner,pentosaneisthoughttocausefiltrationproblemswithwheatstarchhydrolysatesbyincreasingviscosityandbyproducinggelatinousprecipitatewhichblocksfilters.Ironically,itisthissameviscositybuildingandwaterbindingcapacitywhichisconsideredtorenderpentosanesofconsiderablevalueindoughdevelopmentandbreadstorage(anti-stalingfunctions).Inthecurrentpaper,someaspectsofthebeneficialanddetrimentaleffectsofpentosanesandβ-glucaneintheindustrialutilizationofwheatandbarleyarediscussed.Morespecifically,enzymicmethodsforthepreparation,analysisandidentificationofthesepolysaccharidesandfortheremovaloftheirfunctionalproperties,aredescribedindetail.
Measurementof(1→3),(1→4)-β-D-glucaninbarleyandoats:Astreamlinedenzymicprocedure.
McCleary,B.V.&Codd,R.(1991).JournaloftheScienceofFoodandAgriculture,55(2),303-312.
LinktoArticle
ReadAbstract
Acommerciallyavailableenzymicmethodforthequantitativemeasurementof(1→3),(1→4)-β-glucanhasbeensimplifiedtoallowanalysisofupto10grainsamplesin70minorof100–200samplesbyasingleoperatorinaday.Theseimprovementshavebeenachievedwithnolossinaccuracyorprecisionandwithanincreaseinreliability.Theglucoseoxidase/peroxidasereagenthasbeensignificantlyimprovedtoensurecolourstabilityforperiodsofupto1hafterdevelopment.Someproblemsexperiencedwiththeoriginalmethodhavebeenaddressedandresolved,andfurtherexperimentstodemonstratethequantitativenatureoftheassayhavebeendesignedandperformed.
Invitrofermentationkineticsandend-productsofcerealarabinoxylansand(1,3;1,4)-β-glucansbyporcinefaeces.
Williams,B.A.,Mikkelsen,D.,LePaih,L.,&Gidley,M.J.(2011).Journalofcerealscience,53(1),53-58.
LinktoArticle
ReadAbstract
Purifiedandsemi-purifiedpolysaccharidescharacteristicofcerealswerefermentedinvitrowithapigfaecalinoculum,usingthecumulativegasproductiontechnique,toexaminethekineticsandend-productsoffermentationafter48h.Itwasshownthatarabinoxylanandmixedlinkage(1,3;1,4)β-glucanwererapidlyfermentedifsoluble,whilelesssolublesubstrates(insolublearabinoxylan,maizeandwheatstarchgranules,andbacterialcellulose)weremoreslowlyfermented.Relevantmonosaccharideswerefermentedatverysimilarratestosolublepolymericarabinoxylanandβ-glucan,showingthatdepolymerisationwasnotalimitingstep,incontrasttosomepreviousstudies.Bacterialcelluloseisshowntobeausefulmodelsubstrateforfermentationofplantcellulosewhichisdifficulttoobtainwithoutharshchemicaltreatments.Fermentationend-productswererelatedtokinetics,withslowcarbohydratefermentationresultinginincreasedproteinfermentation.Ratiosofshort-chainfattyacidproductsweresimilarforallarabinoxylanandβ-glucansubstrates.
Induction,screeningandidentificationofConiothyriumminitansmutantswithenhancedβ-glucanaseactivity.
Zantinge,J.L.,Huang,H.C.&Cheng,K.J.(2003).EnzymeandMicrobialTechnology,32(2),224-230.
LinktoArticle
ReadAbstract
Theproductionofβ-glucanaseinamycoparasiticfungus,Coniothyriumminitans,wasinvestigatedusingawildtypestrain2134.Throughultraviolet(UV)irrADIationofstrain2134,fourmutants,M11-3B2,A7-3D,A8-1andA10-4,exhibitingenhancedβ-glucanaseactivitieswereisolated.StrainsA8-1andA10-4wereconstitutivemutantsthatexpressedbarleyβ-glucanhydrolysingactivityintheabsenceofasupplementalinducer(β-glucansubstrate).SupernatantfromA8-1andA10-4culturesgrowninpotatodextrosebroth(PDB),themediumwithoutβ-glucan,hadmaximumlevelsofβ-glucanaseactivityonaverage10timesgreaterthanthewildtypestrain2134.M11-3B2hadlowlevelsofconstitutiveβ-glucanaseexpressionandenhancedlaminarinhydrolysingactivitywhengrowninpresenceofβ-glucan-richsubstrate.
Synergismbetweencucumberα-expansin,fungalendoglucanaseandpectinlyase.
Wei,W.,Yang,C.,Luo,J.,Lu,C.,Wu,Y.&Yuan,S.(2010).JournalofPlantPhysiology,167(14),1204-1210.
LinktoArticle
ReadAbstract
Severalrecombinantfungalenzymes(endoglucanaseandpectinase)werestudiedfortheirinteractionswithα-expansinincellwallextensionandpolysaccharidedegradation.BothCel12AandCel5AwereabletohydrolyzecelluloseCMC-Naandmixed-linkageβ-glucan.IncontrasttoCel5A,Cel12Acouldalsohydrolyzexyloglucanandinducewallextensionofcucumberhypocotylsinaninvitroassay.Combiningα-expansin,evenathighconcentrations,withCel12Adidnotenhancethemaximum/finalwallextensionrateinducedbyCel12Aalone.Theseresultsstronglysuggestthatmodification/degradationofthexyloglucanmolecule/networkisthekeyforcellwallextension,andα-expansinandCel12Amaysharethesameactingsiteinthesubstrate.Pectinase(Pel1,apectinlyase)enhancedα-expansin-inducedwallextensioninaconcentration-dependentmanner,suggestingthatthepectinnetworkmaynormallyregulateaccessibilityofexpansintothexyloglucan–cellulosecomplex.α-ExpansinenhancedCel12A"shydrolyticactivityoncelluloseCMC-Nabutnotonxyloglucanandβ-glucan.ExpansindidnotaffectCel5A"shydrolyticactivity.Interestingly,expansinalsoenhancedPel1"sactivityondegradinghighesterifiedpectin.Apotentialexplanationforwhyexpansincouldsynergisticallyinteractwithonlycertainenzymesonspecificpolysaccharidesisdiscussed.Additionalresultsalsosuggestedthatcellwallswellingmaynotbeasignificanteventduringtheactionofexpansinandhydrolases.
InVitrofermentationofoatandbarleyderivedβ-glucansbyhumanfaecalmicrobiota.
Hughes,S.A.,Shewry,P.R.,Gibson,G.R.,McCleary,B.V.&Rastall,R.A.(2008).FEMSMicroBIOLOGyEcology,64(3),482–493.
LinktoArticle
ReadAbstract
Fermentationofβ-glucanfractionsfrombarley[averagemolecularmass(MM),of243,172,and137kDa]andoats(averageMMof230and150kDa)bythehumanfaecalmicrobiotawasinvestigated.FractionsweresupplementedtopH-controlledanaerobicbatchculturefermentersinoculatedwithhumanfaecalsamplesfromthreedonors,intriplicate,foreachsubstrate.Microbiotachangesweremonitoredbyfluorescentinsituhybridization;groupsenumeratedwere:Bifidobacteriumgenus,BacteroidesandPrevotellagroup,Clostridiumhistolyticumsubgroup,Ruminococcus-Eubacterium-Clostridium(REC)cluster,Lactobacillus-Enterococcusgroup,Atopobiumcluster,andclostridialclusterIX.Short-chainfattyacidsandlacticacidweremeasuredbyHPLC.TheC.histolyticumsubgroupincreasedsignificantlyinallvesselsandclostridialclusterIXmaintainedhighpopulationswithallfractions.TheBacteroides-Prevotellagroupincreasedwithallbutthe243-kDabarleyand230-kDaoatsubstrates.Ingeneralβ-glucansdisplayednoapparentprebioticpotential.TheSCFAprofile(51:32:17;acetate:propionate:butyrate)wasconsideredpropionate-rich.Inafurtherstudyaβ-glucanoligosaccharidefractionwasproducedwithadegreeofpolymerizationof3-4.Thisfractionwassupplementedtosmall-scalefaecalbatchculturesandgavesignificantincreasesintheLactobacillus-Enterococcusgroup;however,theprebioticpotentialofthisfractionwasmarginalcomparedwiththatofinulin.
Micro-HeterogeneityandMicro-RheologicalPropertiesofHigh-ViscosityBarleyβ-GlucanSolutionsStudiedbyDiffusingWaveSpectroscopy(DWS).
Xu,J.,Inglett,G.E.,Liu,S.X.&Boddu,V.M.(2016).FoodBiophysics,11(4),339-344.
LinktoArticle
ReadAbstract
Solublefiberβ-glucanisoneofthekeydietarymaterialsinhealthyfoodproductsknownforreducingserumcholesterollevels.Themicro-structuralheterogeneityandmicro-rheologyofhigh-viscositybarleyβ-glucansolutionswereinvestigatedbythediffusingwavespectroscopy(DWS)technology.Bycomparingthemean-squaredisplacement(MSD)ofthemicrospheresimbeddedineightconcentrationsofβ-glucansolutions,wefoundthatthesolutionsexhibitednearlyhomogeneousbehaviorat≤0.1 %,butthematerialshowedacleardegreeofheterogeneityat≥0.25 %.Micro-rheologyinvestigationrevealedthatβ-glucansolutionsdisplayednearlyperfectviscousbehaviorat≤0.1 %,butthepropertychangedintoviscoelasticoneat≥0.25 %.Themagnitudeofhigh-frequencyviscoelasticmoduliforthe0.25 %-0.75 %β-glucansolutionscanbecharacterizedby׀G*׀αω3/4,whichisthesemi-flexIBLepolymerbehavior.However,themagnitudeofhigh-frequencyviscoelasticmoduli(׀G*׀)forthe1.0 %-1.25 %β-glucansolutionsisproportionaltoω1/2,whichistheflexiblepolymerbehavior.Allmicro-structuralheterogeneityandmicro-rheologicalpropertyshiftsoccurredinrelativelysmallconcentrationranges.
Designofapotentiallyprebioticandresponsiveencapsulationmaterialforprobioticbacteriabasedonchitosanandsulfatedβ-glucan.
Falco,C.Y.,Sotres,J.,Rascón,A.,Risbo,J.&Cárdenas,M.(2017).JournalofColloidandInterfaceScience,487,97-106.
LinktoArticle
ReadAbstract
Hypothesis:Chitosanandsulfatedoatβ-glucanarematerialssuitabletocreateaprebioticcoatingfortargeteddeliverytogastrointestinalsystem,usingthelayerbylayertechnology.Experiment:Quartzcrystalmicrobalancewithdissipation(QCM-D),spectroscopicellipsometry(SE)andatomicforcemicroscopy(AFM)wereusedtoassessthemultilayerformationcapacityandcharacterizetheresultingcoatingsintermsofmorphologyandmaterialpropertiessuchasstructureandrigidity.Thecoatingofcolloidalmaterialswasproven,specificallyonL.acidophilusbacteriaasmeasuredbychangesinthebacterialsUSPensionzetapotential.Viabilityofcoatedcellswasshownusingplatecountingmethod.Thecoatingsonsolidsurfaceswereexaminedafterexposuretomimicsofgastrointestinalfluidsandacommerciallyavailableβ-glucanase.Findings:Successfulbuild-upofmultilayerswasconfirmedwithQCM-DandSE.Zetapotentialvaluesprovedthecoatingofcells.Therewas2logCFU/mLdecreaseaftercoatingcellswithfouralternatinglayersofchitosanandsulfatedβ-glucanwhencomparedtoviabilityofuncoatedcells.Thecoatingswerepartiallydegradedafterexposuretosimulatedintestinalfluidandrestructuredasaresultofβ-glucanasetreatment,mimickingenzymespresentinthemicrofloraofthehumangut,butseemedtoresistacidicgastricconditions.Therefore,coatingsofchitosanandsulfatedβ-glucancanpotentiallybeexploitedascarriersforprobioticsanddelicatenutraceuticals.
Reactionpathwaysduringoxidationofcerealβ-glucans.
Mäkelä,N.,Sontag-Strohm,T.,Schiehser,S.,Potthast,A.,Maaheimo,H.&Maina,N.H.(2017).CarbohydratePolymers, 157,1769-1776.
LinktoArticle
ReadAbstract
Oxidationofcerealβ-glucansmayaffecttheirstabilityinfoodproducts.Generally,polysaccharidesoxidiseviadifferentpathwaysleadingtochaincleavageorformationofoxidisedgroupswithinthepolymerchain.Inthisstudy,oxidationpathwaysofoatandbarleyβ-glucanswereassessedwithdifferentconcentrationsofhydrogenperoxide(H2O2)orascorbicacid(Asc)withferrousiron(Fe2+)asacatalyst.Degradationofβ-glucanswasevaluatedusinghighperformancesizeexclusionchromatographyandformationofcarbonylgroupsusingcarbazole-9-carbonyloxyaminelabelling.FurThermore,oxidativedegradationofglucosylresidueswasstudied.Basedontheresults,theoxidationwithAscmainlyresultedinglycosidicbondcleavage.WithH2O2,bothglycosidicbondcleavageandformationofcarbonylgroupswithintheβ-glucanchainwasfound.Moreover,H2O2oxidationledtoproductionofformicacid,whichwasproposedtoresultfromRuffdegradationwhereoxidisedglucose(gluconicacid)isdecarboxylatedtoformarabinose.
DistinctionoffungalpolysaccharidesbyN/Cratioandmidinfraredspectroscopy.
Gomba,G.K.,Synytsya,A.,Švecová,P.,Coimbra,M.A.&Čopíková,J.(2015).InternationalJournalofBiologicalMacromolecules,80,271-281.
LinktoArticle
ReadAbstract
AsetoffungalpolysaccharidesampleswascharacterisedbyelementalanalysisandFTIRspectroscopyandcomparedwithreferencechitins,chitosansandβ-D-glucans.Thenitrogentocarbon(N/C)valuesandFTIRspectrawereusedtocomparethesamplesbasedontheircomposition.ItwasfoundthattheN/Cratiocorrelateswellwithdeacetylationdegree(DD)ofchitosansandchitin/glucanratioRchitoffungalchitin–β-D-glucancomplexeswiththeexceptionofsomesampleshavingsignificantnitrogenand/orcarbonadmixtures.FTIRspectroscopywasindicativefortheN-acetylationofchitins(chitosans)aswellasforthechitin(chitosan)contributiontofungalpolysaccharidepreparations.MultivariateanalysesoftheFTIRdata(HCA,PCA)discriminatedsamplesandreferencematerialsintoseveralclustersdependingontheirsimilarity.Chitosanlactates,chitosan–β-D-glucansandchitin–β-D-glucansofhighandlowamountsofchitinweresuccessfullydiscriminatedfromthereferencepolysaccharidesandfromeachother.TheproposedproceduresbasedontheN/CratioandmultivariateanalysesofFTIRspectramaybeusedinscreeningfungalpolysaccharidepreparations.
Theprotectiveroleofphytateintheoxidativedegradationofcerealbeta-glucans.
Wang,Y.J.,Zhan,R.,Sontag-Strohm,T.&Maina,N.H.(2017).CarbohydratePolymers,169,220-226.
LinktoArticle
ReadAbstract
ThisstudyinvestigatedtheroleofphytateintheFentonreactioninducedoxidativedegradationofcerealβ-glucan.Viscosityanalysisshowedthatthedegradationratewashighinthebeginningofoxidation,whichfittedtothesecondorderkineticmodel.Oatβ-glucancontainedsignificantamountofresidualphytateandaftertheresidualphytatewasremoved,fasterdegradationwasshowncomparedtotheoriginaloatβ-glucan.Addingthesameamountofphyticacid(PA)tothephytateremovedβ-glucansamplealsoretardedthedegradationbutnotasefficientlyastheresidualphytate.ConsiderableretardationofviscositylosswasshownwhenthePAtoironratiowashigh.Thepresenceofascorbicacidweakenedtheretardationeffectofphyticacid.Thus,phytatecansignificantlyimprovetheoxidativestabilityofβ-glucanwhentheratioofphyticacidtotransitionmetalsandthepresenceofascorbicacidaretakenintoconsideration.
Gelationofcerealβ-glucanatlowconcentrations.
Mäkelä,N.,Maina,N.H.,Vikgren,P.&Sontag-Strohm,T.(2017).FoodHydrocolloids, 73,60-66.
LinktoArticle
ReadAbstract
Viscosityofcerealβ-glucanduringdigestionisconsideredtobeavitalfactorforitshealtheffects.Thus,studiesonsolutionpropertiesandgelationareessentialforunderstandingthemechanismsoftheβ-glucanfunctionality.Theaimofthisstudywastoinvestigatetheeffectofthedissolutiontemperatureongelationofcerealβ-glucanatlowconcentrationsthatarerelevantforfoodproducts.Therheologicalpropertiesofoatandbarleyβ-glucans(OBGandBBG)usingthreedissolutiontemperatures(37°C,57°Cand85°C)atlowconcentration(1.5%and1%,respectively)werestudiedfor7days.Additionally,theβ-glucanswereoxidisedwith70 mMH2O2and1 mMFeSO4×7H2Oasacatalyst,toevaluatetheconsequenceofoxidativedegradationonthegelationproperties.Thestudyshowedthatdissolutionat85°Cdidnotresultingelation.TheoptimaldissolutiontemperatureforgelationofOBGwas37°CandforgelationofBBG57°C.Atthesetemperatures,alsotheoxidisedOBGandBBGgelled,althoughthegelstrengthwassomewhatlowerthaninthenon-oxidisedones.Gelationwassuggestedtorequirepartialdissolutionofβ-glucan,whichdependedonthemolarmassandaggregationstateoftheβ-glucanmolecule.Therefore,thestateofβ-glucaninsolutionanditsthermaltreatmenthistorymayaffectitstechnologicalandphysiologicalfunctionality.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们