Megazyme/&beta-葡聚糖分子量标准/P-MWBGS/6 X 500 mg
商品编号:
P-MWBGS
品牌:
Megazyme INC
市场价:
¥8856.00
美元价:
5313.60
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
Highpurityβ-GlucanMWStandardforuseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
β-Glucanmolecularweightstandards.Molecularweights35-650Kdaltons.
TexturalandBileAcid-BindingPropertiesofMuffinsImpactedbyOatβ-glucanwithDifferentMolecularWeights.
Sayar,S.,Jannink,J.L.&White,P.J.(2011).CerealChemistry,88(6),564-569.
LinktoArticle
ReadAbstract
Water-solubleβ-glucan(BG)extractedfromahigh-BGoatlinewastreatedwithdifferentamountsoflichenase(1→3)(1→4)-β-D-glucanase)enzymetoyieldthreedifferentmolecularweight(MW)BGextracts.Low(LMW-BG,157,000),medium(MMW-BG,277,000),andhigh(HMW-BG,560,000)MWBGextractswereaddedtoplainmuffinformulationsatalevelof0.52%(0.42%inthebatter,0.52%intheresultantmuffins)toinvestigatetheeffectofMWofBGontexturalandbileacid(BA)bindingpropertiesofthemuffins.Inaddition,treatmentswerepreparedcontainingLMW-BG,MMW-BG,andHMW-BGextractsinamountsprovidingequivalentbatterfirmnessasdeterminedonatextureanalyzer.ResultantBGconcentrations(andperservingamounts)ofthesemuffinswere1.36%(0.81g/60gmuffin),1.05%(0.63g/60gmuffin),and0.52%(0.31g/60gmuffin),respectively;thus,theLMWtreatmentcompliedwithaU.S.FoodandDrugAdmiNISTrationhealthclaimrequiring0.75gofBGperserving.Thefirmness,springiness,andBA-bindingcapacityofthemuffinswereunaffectedbytheMWofBG.However,whenaddedatthemaximumlimitforequivalentbatterfirmness,theLMWtreatmentwasmorefirmandlessspringythantheHMWtreatment.FurThermore,BA-bindingcapacitiesofLMWandMMWfractionstendedtobegreaterthanthatoftheHMWfractionwhenaddedatthemaximumlimit.Theseresultsaddfurtherevidencetotheimportanceoffine-tuningBGstructuretoprovidemaximumhealthbenefitswhilemaintaininghighproductquality.
Impactofβ-glucanandotheroatflourcomponentsonphysico‐chemicalandsensorypropertiesofextrudedoatcereals.
Yao,N.,White,P.J.&Alavi,S.(2011).InternationalJournalofFoodScience&Technology,46(3),651-660.
LinktoArticle
ReadAbstract
Wholeoatflour,N979-5-2-4(N979),IA95111(IA95),‘Jim’and‘Paul’withβ-glucanconcentrationof8.6%,7.6%,5.3%,and5.9%,respectively,wasmadeintoextrudedbreakfastcereal(EBC).EBCβ-glucanhadgreaterpeakmolecularweightthancorrespondingwholeoatflour.BothwholeoatflourandEBCfromN979andIA95hadgreaterpeakviscosity(PV),asmeasuredusingaRapidViscoAnalyser,thanthatfromJimorPaul.BileacidbindingofEBC,correlatedwithtotalβ-glucanconcentrationsandPV,waseithersimilarorgreaterthanthatofcorrespondingwholeoatflour.JimEBChadtheleastexpansionratio,lowestbrowncolourandcerealaromabutgreatesttoothpackingvalues.PaulandN979EBC,althoughdifferentfromeachotherinafewsensoryattributes,hadsimilaracceptABIlityasjudgedfromaconsumertest,suggestingthatoatswithelevatedβ-glucanconcentrationscanbesuccessfullyincorporatedintoEBCwithminimalprocessingalterations.
Invitrobile-acidbindingandfermentationofhigh,medium,andlowmolecularweightβ-glucan.
Kim,H.J.&White,P.J.(2010).JournalofAgriculturalandFoodChemistry,58(1),628-634.
LinktoArticle
ReadAbstract
Theimpactofβ-glucanmolecularweight(MW)oninvitrobile-acidbindingandinvitrofermentationwithhumanfecalflorawasevaluated.β-Glucanextractedfromoatline‘N979-5-4’wastreatedwithlichenase(1,3−1,4-β-D-glucanase)toyieldhigh(6.87×105g/mol),medium(3.71×105g/mol),andlow(1.56×105g/mol)MWfractions.ThelowMWβ-glucanboundmorebileacidthandidthehighMWβ-glucan(p<0.05).=""if=""the=""positive=""control,=""cholestyramine,=""was=""considered=""to=""bind=""bile=""acid=""at=""100%,=""the=""relative=""bile-acid=""binding=""of=""the=""original=""oat=""flour=""and=""the=""extracted=""β-glucan=""with=""high,=""medium,=""and=""low=""mw=""was=""15,=""27,=""24,=""and=""21%,=""respectively.=""significant=""effects=""of=""high,=""medium,=""and=""low=""mw=""β-glucans=""on=""total=""scfa=""were=""observed=""compared=""to=""the=""blank=""without=""substrate="">p<0.05).=""there=""were=""no=""differences=""in=""ph=""changes=""and=""total=""gas=""production=""among=""high,=""medium,=""and=""low=""mw=""β-glucans,=""and=""lactulose.=""the=""low=""mw=""β-glucan=""produced=""greater=""amounts=""of=""scfa=""than=""the=""high=""mw=""after=""24=""h=""of=""fermentation.=""among=""the=""major=""scfa,=""more=""propionate=""was=""produced=""from=""all=""mw=""fractions=""of=""extracted=""β-glucans=""than=""from=""lactulose.="">Invitrofermentationofextractedβ-glucanfractionswithdifferentMWloweredpHandproducedSCFA,providingpotentialBIOLOGicalfunction.
Physicochemicalpropertiesandstructuralcharacterizationbytwo-dimensionalNMRspectroscopyofwheatβ-D-glucan—comparisonwithothercerealβ-D-glucans.
Cui,W.,Wood,P.J.,Blackwell,B.&Nikiforuk,J.(2000).CarbohydratePolymers,41(3),249-258.
LinktoArticle
ReadAbstract
Thefirstisolation,purificationandcharacterizationofawheatβ-D-glucanisreported.Alkalineextractionofwheatbranpreparedbyanovelpre-processinggaveanon-starchpolysaccharidefraction.Purificationwascarriedoutbyhydrolyzingthearabinoxylansofthisfractionwithβ-D-xylanase(T.Viride,EC3.2.1.8),whichhadnoeffectonthemolecularweightoftheβ-D-glucan.Thestructureofthepurifiedwheatβ-D-glucanwascharacterizedbyNMRspectroscopy,andadditionalstructuraldetailwasrevealedbyhydrolysiswith(1→3)(1→4)-β-D-glucan-4-glucanohydrolase(lichenase,EC3.2.1.73)andanalysisoftheoligosaccharidereactionproducts.Directandlong-rangehomo-(1H/1H)andhetero-(13C/1H)nuclearshiftcorrelationswereusedtomakecompleteassignmentsofboththe13Cand1Hspectraaswellastoconfirmsequencesandlinkagesites.The13CNMRspectrumofwheatβ-D-glucanappearedidenticaltothatofothercerealβ-D-glucans,suchasthosefromoatandbarley.However,theratioof3-O-β-cellobiosyl-and3-O-β-cellotriosyl-D-glucoseobtainedfromwheatβ-D-glucanbylichenasehydrolysiswassignificantlyhigherthanratiosfromothercerealβ-D-glucans(approximately4,3and2forwheat,barleyandoat,respectively).Thepredominantmolarproportionoftrisaccharide(72.4%)fromwheatβ-D-glucansuggeststhatitwillhaveamoreregularstructurethantheotherβ-D-glucans,whichmightberesponsIBLeforitsgreatergellingabilityandpoorersolubilityinwatercomparedtoothercerealβ-D-glucans.
Macromolecularcharacterisationofthreebarleyβ-glucanstandardsbysize-exclusionchromatographycombinedwithlightscatteringandviscometry:aninter-laboratorystudy.
Christensen,B.E.,Ulset,A.S.,Beer,M.U.,Knuckles,B.E.,Williams,D.L.,Fishman,M.L.,Chau,H.K.&Wood,P.J.(2001).CarbohydratePolymers,45(1),11-22.
LinktoArticle
ReadAbstract
Six(1→3)(1→4)-β-D-glucanstandards(A–F)isolatedfrombarleywereanalysedbysize-exclusionchromatography(SEC)infivedifferentlaboratorieswithvaryingcolumns,solventconditionsanddetectorsystems(low-andmulti-anglelightscatteringandviscometry).Static(batch)measurementsbycapillaryviscometryandlaserlightscatteringwereincluded.Fairlyconsistentresultswereobtainedfortheweightaveragemolecularweights(Mw),rADIiofgyration(RG)andintrinsicviscosities[η],demonstratingthattheβ-glucansmayserveasusefulstandardsorreferencematerialsinthestudyofcerealβ-glucans.AveragevaluesforMwwere:A,E:114,000(±11%);B,C:374,000(±9%),D,F:228,000(±13%).Someinconsistenciesregardingthepolydispersity(Mw/Mn)couldbeascribedtotheinfluenceofpeakbroadeningincertaincolumn/solventsystems.Thestudyfurtherdemonstratedthatindividualresearcherstendedtousedifferentprocessingparameters,especiallyrefractiveindexincrements(dn/dc),duetoambiguitiesintheliteratureortodifferingexperimentalvalues.Theneedforconsistentparametersandprocessingmethodsisclearlydemonstrated.
Reducingbeta-glucansolubilityinoatbranmuffinsbyfreeze-thawtreatmentattenuatesitshypoglycemiceffect.
Lan-Pidhainy,X.,Brummer,Y.,Tosh,S.M.,Wolever,T.M.&Wood,P.J.(2007).CerealChemistry,84(5),512-517.
LinktoArticle
ReadAbstract
Theviscosityofsolublefiberssuchasβ-glucandependsontheirconcentrationinsolutionandmolecularweight(MW)distribution.Weinvestigatedwhetherfreezingtreatmentofoatbranmuffinsaffectedthephysicochemicalpropertiesofβ-glucan,anditsphysiologicaleffectivenessinloweringpostprandialbloodglucoseresponse.Acontrolledrangeofβ-glucansolubilitywasachievedbysubjectingoatbranmuffinscontainingtwolevelsofβ-glucantorepeatedfreeze-thawtemperaturecycling.β-glucansolubilizedbyinvitrodigestionextractionwasmeasuredbyflow-injectionanalysis.MWdistributionsofβ-glucanwereanalyzedusingsize-exclusionchromatography.β-glucansolubilitydecreasedasthenumberoffreeze-thawcyclesincreased,whileMWdistributionofβ-glucandecreasedslightly.Peakbloodglucoserise(PBGR)afterfreshmuffins(8and12gofβ-glucan/serving)wassignificantlylowerthanthataftermuffins(8and12gofβ-glucan/serving)treatedwithfourfreeze-thaw(FT)cycles(1.84±0.2vs.2.31±0.1mmol/L,P=0.007).Comparedwiththecontrolwholewheatmuffins,thereductioninincrementalareaundertheglucoseresponsecurve(AUC)afterfreshmuffins(8and12gofβ-glucan/serving)wasnearlytwicethatafter4FTcycles(43.3±4.4%vs.27.0±5.4%,P=0.016).Asignificantinverselinearrelationshipwasfoundbetweenthelog[concentration]ofextractableβ-glucanandPBGR(r2=0.85,P=0.01),andAUC(r2=0.71,P=0.03).Theresultsshowthatreductionofβ-glucansolubilityinfoodsattenuatesitsphysiologicaleffectivenessinloweringpostprandialglycemia.
Invitrofermentationofoatfloursfromtypicalandhighβ-glucanoatlines.
Kim,H.J.&White,P.J.(2009).JournalofAgriculturalandFoodChemistry,57(16),7529-7536.
LinktoArticle
ReadAbstract
Twopubliclyavailableoat(Avenasativa)lines,“Jim”and“Paul”(5.17and5.31%β-glucan,respectively),andoneexperimentaloatline“N979”(7.70%β-glucan),wereusedtostudytheeffectofβ-glucanlevelsinoatfloursduringsimulatedinvitrodigestionandfermentationwithhumanfecalfloraobtainedfromdifferentindividuals.Theoatfloursweredigestedbyusinghumandigestionenzymesandfermentedbybatchfermentationunderanaerobicconditionsfor24h.ThefermentationprogresswasmonitoredbymeasuringpH,totalgas,andshort-chainfattyacid(SCFA)production.Significanteffectsofβ-glucanontheformationofgasandtotalSCFAwereobservedcomparedtotheblankwithoutsubstrate(P<0.05);=""however,=""there=""were=""no=""differences=""in=""ph=""changes,=""total=""gas,=""and=""total=""scfa=""production=""among=""oat=""lines="">P>0.05).Acetate,propionate,andbutyratewerethemainSCFAproducedfromdigestedoatfloursduringfermentation.Morepropionateandlessacetatewereproducedfromdigestedoatflourscomparedtolactulose.DifferenthumanfecalflorasobtainedfromthreehealthyindividualshadsimilarpatternsinthechangeofpHandtheproductionofgasduringfermentation.TotalSCFAafter24hoffermentationwerenotdifferent,buttheformationratesoftotalSCFAdifferedbetweenindividuals.Invitrofermentationofdigestedoatflourswithβ-glucancouldprovidefavorableenvironmentalconditionsforthecolonandthesefindings,thus,willhelpindevelopingoat-basedfoodproductswithdesirablehealthbenefits.
Physicochemicalpropertiesofβ-glucanindifferentlyprocessedoatfoodsinfluenceglycemicresponse.
Regand,A.,Tosh,S.M.,Wolever,T.M.&Wood,P.J.(2009).JournalofAgriculturalandFoodChemistry,57(19),8831-8838.
LinktoArticle
ReadAbstract
Toassesstheeffectoffoodprocessingonthecapacityofoatβ-glucantoattenuatepostprandialglycemia,isocaloriccrispbread,granola,porridge,andpastacontaining4gofβ-glucanaswellascontrolproductswithlowβ-glucancontentwereprepared.Thephysicochemicalproperties(viscosity,peakmolecularweight(Mp),andconcentration(C))ofβ-glucaninin-vitro-digestionextractswereevaluated,andfastingandpostprandialbloodglucoseconcentrationsweremeasuredinhumansubjects.Porridgeandgranolahadthehighestefficacyinattenuatingthepeakbloodglucoseresponse(PBGR)becauseoftheirhighMpandviscosity.β-Glucandepolymerizationinbreadandpastareducedβ-glucanbioactivity.Pastas,knowntohavelowglycemicresponses,showedthelowestPBGR.Theanalysesoftheseproductswithpreviouslyreporteddataindicatedthat73%ofthebioactivityinreducingPBGRcanbeexplainedbyMp×C.Characterizingthephysicochemicalpropertiesofβ-glucaninbioactivefoodsaidsfunctionalfooddevelopment.
Glycemicresponsetooatbranmuffinstreatedtovarymolecularweightofβ-glucan.
Tosh,S.M.,Brummer,Y.,Wolever,T.M.&Wood,P.J.(2008).CerealChemistry,85(2),211-217.
LinktoArticle
ReadAbstract
Oatbranmuffins,containing4or8gofβ-glucanpertwo-muffinserving,werepreparedwithorwithoutβ-glucanasetreatmenttoproducearangeofβ-glucanmolecularweightsfrom130,000tojustover2million.Followinganovernightfast,theglycemicresponseselicitedbytheuntreatedandtreatedmuffinswasmeasuredin10healthysubjectsandcomparedwithacontrolwholewheatmuffin.Takenalltogether,the4-gβ-glucan/servingmuffinsreducedbloodglucosepeakrise(PBGR)by15±6%comparedwiththecontrol.The8-gβ-glucan/servingmuffinshadasignificantlygreatereffect(44±5%reductioncomparedwiththecontrol,P<0.05).=""the=""efficacy=""of=""the=""muffins=""decreased=""as=""the=""molecular=""weight=""was=""reduced=""from=""a=""45=""±=""6%=""reduction=""in=""pbgr="">P<0.05)=""for=""the=""untreated=""muffins=""(averaged=""of=""both=""serving=""sizes)=""to=""15=""±=""6%="">P<0.05)=""for=""muffins=""with=""the=""lowest=""molecular=""weight.=""as=""the=""molecular=""weight=""was=""reduced=""from=""2,200,000=""to=""400,000,=""the=""solubility=""of=""the=""β-glucan=""increased=""from=""a=""mean=""of=""44=""to=""57%,=""but=""as=""the=""molecular=""weight=""was=""further=""decreased=""to=""120,000,=""solubility=""fell=""to=""26%.=""there=""was=""a=""significant=""correlation="">r2=0.729,P<0.001)=""between=""the=""peak=""blood=""glucose=""and=""the=""product=""of=""the=""extractable=""β-glucan=""content=""and=""the=""molecular=""weight=""of=""the=""β-glucan=""extracted.="">
Solutionbehaviorofbarleyβ-glucanasstudiedwithasymmetricalflowfield-flowfractionation.
Ulmius,M.,Önning,G.&Nilsson,L.(2012).FoodHydrocolloids,26(1),175-180.
LinktoArticle
ReadAbstract
Physicochemicalpropertiesofcerealβ-glucans,associatedwithbeneficialhealtheffects,arerelatedtotheirsolutionbehaviorandpossiblytotheirpropensitytoformaggregates.Suchpropertiesareoftenanalyzedwithmethodsthatmayinfluencetheaggregatesperse.Inthispaper,theeffectofprocessingonsolutionbehaviorofpurebarleyβ-glucanwasstudiedusingasymmetricalflowfield-flowfractionation(AsFlFFF),amethodwhichiscapableofanalyzingthepresentaggregates.Molarmassdistributionsweredeterminedbyin-linemulti-anglelightscatteringandrefractiveindexdetectors.Unprocessedsampleshadamainfractionofaggregateswithaweight-averagemolarmassof2.8×106g/mol.Microwaveheatingto100°Creducedthelargestaggregates,whileheatingto121°Cprominentlydecreasedthemolarmass.Frozenstoragefor1weekdidnotinfluencetheaggregation,butrepeatedfreeze–thawcycleschangedthestructureofaggregatesinawaythatsuggestscryogelation.Theinfluenceofprocessingconditionsonsolutionbehaviormightexplainwhydifferentlyprocessedfoodproductscontainingβ-glucanhavegivendifferenthealtheffects.Experimentswiththeaimtoeliminateaggregatesdemonstratedthatfiltration(0.45µm)priortoanalysisresultedindisruptionofthelargestaggregates,indicatingthattheseaggregateswillnotbedetectedwhenfiltrationisused.DissolutioninNaOHsolution,oneoffewsolventsreportedtoeliminateaggregates,resultedinretainedmolarmass.UsingAsFlFFFtostudythesolutionbehaviorofβ-glucansisagentlemethodtoanalyzesubtlechangesofphysicochemicalproperties.
Developmentofbarleyandyeastβ-glucanaerogelsfordrugdeliverybysupercriticalfluids.
Salgado,M.,Santos,F.,Rodríguez-Rojo,S.,Reis,R.L.,Duarte,A.R.C.&Cocero,M.J.(2017).JournalofCO2Utilization,22,262-269.
LinktoArticle
ReadAbstract
Polysaccharideaerogelsareagoodalternativeascarriersfordrugdelivery,sincetheyallowhighloadingoftheactivecompoundsinmatricesthatarenon-toxic,biocompatibleandfromarenewablefeedstock.Inthiswork,barleyandyeastβ-glucansaerogelswereproducedbygelationinaqueoussolution,followedbysolventexchangeanddryingwithsupercriticalCO2.First,viscoelasticpropertiesandmeltingprofileofthehydrogelsweredetermined.Then,theobtainedaerogelswereanalyzedregardingmorphology,mechanicalpropertiesandbehaviorinphysiologicalfluid.Bothinthehydrogelsandintheaerogels,bigdifferenceswereobservedbetweenbarleyandyeast7beta;-glucansduetotheirdifferentchainstructureandgelationbehavior.Finally,impregnationofacetylsalicylicacidwasperformedatthesametimeasthedryingofthealcogelswithsupercriticalCO2.ThereleaseprofileofthedruginPBSwasanalyzedinordertodeterminethemechanismgoverningthereleasefromtheβ-glucanmatrix.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们