Megazyme/AZCL木聚糖(桦木)/I-AZXBW/4克
商品编号:
I-AZXBW
品牌:
Megazyme INC
市场价:
¥3288.00
美元价:
1972.80
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCLXylan(Birchwood)foridentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Substratefortheassayofendo-1,4-β-D-xylanase.
Purificationandcharacterisationoftwoextremelyhalotolerantxylanasesfromanovelhalophilicbacterium.
Wejse,P.L.,Ingvorsen,K.&Mortensen,K.K.(2003).Extremophiles,7(5),423-431.
LinktoArticle
ReadAbstract
Thepresentworkreportsforthefirsttimethepurificationandcharacterisationoftwoextremelyhalotolerantendo-xylanasesfromanovelhalophilicbacterium,strainCL8.Purificationofthetwoxylanases,Xyl1and2,wasachievedbyanionexchangeandhydrophobicinteractionchromatography.Theenzymeshadrelativemolecularmassesof43kDaand62kDaandpIof5.0and3.4respectively.StimulationofactivitybyCa+2,Mn+2,Mg+2,Ba+2,Li+2,NaN3,andisopropanolwasobserved.TheKmandVmaxvaluesdeterminedforXyl1with4-O-methyl-D-glucuronoxylanare5mg/mland125,000nkat/mgrespectively.ThecorrespondingvaluesforXyl2were1mg/mland143,000nkat/mgprotein.Xylobioseandxylotriosewerethemajorendproductsforbothendoxylanases.ThexylanaseswerestableatpH4–11showingpHoptimaaroundpH6.Xyl1showsmaximalactivityat60°C,Xyl2at65°C(at4MNaCl).ThexylanasesshowedhightemperaturestABIlitywithhalf-livesat60°Cof97minand192minrespectively.Bothxylanasesshowedoptimalactivityat1MNaCl,butsubstantialactivityremainedforbothenzymesat5MNaCl.
Genesencodingxylanandβ-glucanhydrolysingenzymesinBacillussubtilis:characterization,mappingandconstructionofstrainsdeficientinlichenase,cellulaseandxylanase.
Wolf,M.,Geczi,A.,Simon,O.&Borriss,R.(1995).Microbiology,141(2),281-290.
LinktoArticle
ReadAbstract
Thegeneencodingextracellularxylanase(xynA)wasamplifiedasa770bpDNAfragmentBacillussubtilis168chromosomalDNAbyPCR.Thegenesencodingendo-β-1,4-glucanase(eglS)andendo-β-1,3-1,4-glucanase(bglS)wereisolatedfromagenomiclibraryofB.subtilis168.ThesequencesofxynAandeglSwereidenticaltothoseofthexylanaseandcellulasegenesfromB.subtilisPAP115.IntegrativeplasmidscontainingDNAfragmentswithdeletionsinthecodingregionofthegeneswereconstructedandusedtoreplacethechromosomaleglS,bglSandxynAgenesofB.subtilis168.Strainswithoutanydetectableactivityagainstxylan(Xyn-),carboxymethylcellulose(Egl-)ormixedlinkedβ-1,3-1,4-glucan(Egl-Bgl-)wereobtained.Thegenesweremappedat170°(eglS),175°(xynA)and340°(bglS)ontheB.subtilischromosome.
IdentificationandcharacterizationofanewxylanasefromGram-positivebacteriaisolatedfromtermitegut(Reticulitermessantonensis).
Mattéotti,C.,Bauwens,J.,Brasseur,C.,Tarayre,C.,Thonart,P.,Destain,J.,Francis,F.,Haubruge,E.,DePauw.,E.,Portetelle.,D.&Vandenbol,M.(2012).ProteinExpressionandPurification,83(2),117-127.
LinktoArticle
ReadAbstract
Termitesareworldchampionsatdigestinglignocellulosiccompounds,thankstocooperationbetweentheirownenzymesandexogenousenzymesfrommicroorganisms.ProkaryoticcellsareresponsIBLeforalargepartofthislignocellulolyticactivity.Bacterialenzymeactivitieshavebeendemonstratedinthehigherandthelowertermitegut.FromfiveclonesofGram-positivebacteriaisolatedandidentifiedinapreviouswork,weconstructedagenomicDNAlibraryandperformedfunctionalscreeningforalpha-amylase,beta-glucosidase,andxylanaseactivities.Onecandidate,Xyl8B8,showedxylanaseactivity.SequenceanalysisofthegenomicinsertrevealedfivecompleteORFsontheclonedDNA(5746bp).Amongtheencodedproteinswereaputativeendo-1,4-beta-xylanase(XylB8)belongingtoglycosidehydrolasefamily11(GH11).Onthebasisofsequenceanalyses,genomicDNAorganization,andphylogeneticanalysis,theinsertwasshowntocomefromanactinobacterium.Thematurexylanase(mXylB8)wasexpressedinEscherichiacoliandpurifiedbyaffinitychromatographyanddetectedbyzymogramanalysisafterrenaturing.Itshowedmaximalxylanaseactivityinsodiumacetatebuffer,pH5.0at55°C.ItsactivitywasincreasedbyreducingagentsanddecreasedbyCu2+,somedetergents,andchelatingagents.Itssubstratespecificityappearedlimitedtoxylan.
Xylanaseproductionbyanovelhalophilicbacteriumincreased20-foldbyresponsesurfacemethodology.
Wejse,P.L.,Ingvorsen,K.&Mortensen,K.K.(2003).EnzymeandMicrobialTechnology,32(6),721-727.
LinktoArticle
ReadAbstract
Mediumoptimisationforanovelhalophiliceubacterium,strainSX15,resultedina20-foldincreaseofextracellularxylanaseactivity.Thisfacilitatesthepurificationofxylanaseproducedbythisstrain.Priorexperimentsrevealedthatxylanconcentration,sourceandconcentrationofnitrogenandsalinitywereimportantvariablesforxylanaseproduction.Basedonthis,weadoptedafractionalfactorialdesigntodeterminethebestcombinationsandapproximatelevelsofthesevalues.Subsequently,responsesurface(RS)methodologywasappliedtolocatetheoptimallevelsofxylan,NH4Clandsalinity.
Endo-1,4-beta-xylanaseBfromAspergilluscf.nigerBCC14405isolatedinThailand:Purification,characterizationandgeneisolation.
Krisana,A.,Rutchadaporn,S.,Jarupan,G.,Lily,E.,Sutipa,T.&Kanyawim,K.(2005).JournalofBiochemistryandMolecularBiology,38(1),17-23.
LinktoArticle
ReadAbstract
Duringthescreeningofxylanolyticenzymesfromlocallyisolatedfungi,onestrainBCC14405,exhibitedhighenzymeactivitywithThermostability.ThisfugalstrainwasidentifiedasAspergilluscf.nigerbasedonitsmorphologicalcharacteristicsandinternaltranscribedspacer(ITS)sequences.AnenzymewithxylanolyticactivityfromBCC14405waslaterpurifiedandcharacterized.Itwasfoundtohaveamolecularmassofca.21kDa,anoptimalpHof5.0,andanoptimaltemperatureof55°C.Whentestedusingxylanfrombirchwood,itshowedKmandVmaxvaluesof8.9mg/mland11,100U/mg,respectively.TheenzymewasinhibitedbyCuSO4,EDTA,andbyFeSO4.Thehomologyofthe20-residueN-terminalproteinsequenceshowedthattheenzymewasanendo-1,4-β-xylanase.Thefull-lengthgeneencodingendo-1,4-β-xylanasefromBCC14405wasobtainedbyPCRamplificationofitsCDNA.ThegenecontainedanopenreADIngframeof678bp,encodinga225aminoacidprotein,whichwasidenticaltotheendo-1,4-â-xylanaseBpreviouslyidentifiedinA.niger.
Aninternalcellulose-bindingdomainmeidatesadsorptionofanengineeredbifunctionalxylanase/cellulase.
Tomme,P.,Gilkes,N.R.,MillerJr,R.C.,Warren,A.J.&Kilburn,D.G.(1994).ProteinEngineering,7(1),117-123.
LinktoArticle
ReadAbstract
Achimericxylanase/endoglucanase(XynCenA)withaninternalcellulose-bindingdomainwasconstructedbyfusingtheBacillussubtilisxyngenefragmenttothe5"-endoftheCellulomonasfimicenA.Apolyhistidine-encodingsequencewasalsofusedtothe5"-endofthexyngene.ThegenefusionwasoverexpressedinEscherichiacoliandthefusionpoly-peptidepurifiedfromthecellextractsusingthepolyhistldinetail.Thehybridproteinbehavedliketheparentalendo-glucanaseorxylanasewhenassayedonanumberofsolubleandinsolublecellulosicsubstratesorxylans.Thepresenceoftwodistinctactivesitesandtheinternalcellulose-bindingdomaindidnotsignificantlyaffectthehydrolysisofanyofthesesubstrates.However,thefusionproteinexhibitedastrongaffinityforbothmkrocrystaUinecellulose(Avicel)andregeneratedchitin.Liketheparentalendoglucanase,boundXynCenAcouldnotbedutedfromtheseporysaccharideswitheitherloworhighsaltbufferordistilledwater.Morestringentconditions,suchas1%SDSor8Mguanidiniumhydro-chloride,fullydesorbedtheprotein.Thefusionproteindidnotadsorbsignificantlytoinsolublexylan.
Cloning,expression,characterization,andhighcell-densityproductionofrecombinantendo-1,4-β-xylanasefromAspergillusnigerinPichiapastoris.
Ruanglek,V.,Sriprang,R.,Ratanaphan,N.,Tirawongsaroj,P.,Chantasigh,D.,Tanapongpipat,S.,Pootanakit,K.&Eurwilaichitr,L.(2007).EnzymeandMicrobialTechnology,41(1),19-25.
LinktoArticle
ReadAbstract
ArecombinantgeneXylB(564bp)encodingendo-1,4-β-xylanase,obtainedfromAspergillusnigerBCC14405,wassuccessfullyclonedandsecretedasa21kDainPichiapastorisunderthecontrolofAOX1promoter.Theactivityoftherecombinantxylanasewashighestat55°Cwhichwas5°Chigherthannativexylanase.Inaddition,therecombinantxylanasewasactiveovertherangeofpH3.6–6.5withmaximalactivityatpH5(8007U/mg).Whencomparedtoacommercialenzymeinvitrodigestibilityoftherecombinantenzymewas1.8-and2.4-foldshigherdigestingratesofricebranandsoybeanmealfibers,respectively.Two-literproductionofxylanasewasperformedwithBSMmediumwhichincreasedcellconcentrationupto84.5gdry-weight/Lviathe80%µmaxexponentialfeedstrategy.Thisprocessprovidedmaximumxylanaseproduction(3676U/mL)withhighestspecificactivity(7352U/mgprotein)andvolumetricproductivity(22,832U/L/h)at3.0%(v/v)methanolinduction.Byfar,thiswasthehighestxylanaseexpressioninP.pastorishostsystembeingreported.Thus,thisBCC14405recombinantxylanasecouldbeproducedandusedeffectivelyasafeedadditiveforanimals.
Salinityandtemperatureeffectsonaccessibilityofsolubleandcross‐linkedinsolublexylanstoendo‐xylanases.
Wejse,P.L.,Ingvorsen,K.&Mortensen,K.K.(2005).IUBMBLife,57(11),761-763.
LinktoArticle
ReadAbstract
Differentresponsestosalinitywereobservedforanextremelyhalotolerantendo-xylanasewhenassayedwithsolublebirchwoodglucoronoxylanandcross-linkeddyedinsolublebirchwoodglucoronoxylan.Shrinkingofinsolublexylanparticlesduetoincreasedionicstrengthisproposedastheexplanation.Temperatureaffectedthexylanaseactivitymeasurementontheinsolublexylangreatly,likelyduetoincreasedenzymeaccessiblesurfaceofthesubstrateathightemperatures.
EvaluationofthreeautomatedgenomeannotationsforHalorhaBDusutahensis.
Bakke,P.,Carney,N.,DeLoache,W.,Gearing,M.,Ingvorsen,K.,Lotz,M.,McNair,J.,Penumetcha,P.,Simpson,S.,Voss,L.,Win,M.,Heyer,L.J.&Campbell,A.M.(2009).PLoSOne,4(7),e6291.
LinktoArticle
ReadAbstract
Genomeannotationsareaccumulatingrapidlyanddependheavilyonautomatedannotationsystems.Manygenomecentersofferannotationsystemsbutnoonehascomparedtheiroutputinasystematicwaytodetermineaccuracyandinherenterrors.ErrorsintheannotationsareroutinelydepositedindatabasessuchasNCBIandusedtovalidatesubsequentannotationerrors.WesubmittedthegenomesequenceofhalophilicarchaeonHalorhabdusutahensistobeanalyzedbythreegenomeannotationservices.Wehaveexaminedtheoutputfromeachserviceinavarietyofwaysinordertocomparethemethodologyandeffectivenessoftheannotations,aswellastoexplorethegenes,pathways,andphysiologyofthepreviouslyunannotatedgenome.Theannotationservicesdifferconsiderablyingenecalls,features,andeaseofuse.Wehadtomanuallyidentifytheoriginofreplicationandthespecies-specificconsensusribosome-bindingsite.Additionally,weconductedlaboratoryexperimentstotestH.utahensisgrowthandenzymeactivity.Currentannotationpracticesneedtoimproveinordertomoreaccuratelyreflectagenome"sbiologicalpotential.Wemakespecificrecommendationsthatcouldimprovethequalityofmicrobialannotationprojects.
Productionofβ-xylanaseandβ-xylosidasebytheextremelyhalophilicarchaeonHalorhabdusutahensis.
Wainø,M.&Ingvorsen,K.(2003).Extremophiles,7(2),87-93.
LinktoArticle
ReadAbstract
Theextremelyhalophilicarchaeon,Halorhabdusutahensis,isolatedfromtheGreatSaltLake,Utah,producedβ-xylanaseandβ-xylosidaseactivities.BothenzymeswereactiveoverabroadNaClrangefromnearzeroto30%NaClwhentestedwithculturebroth.AbroadNaCloptimumwasobservedforβ-xylanaseactivitybetween5%and15%NaCl,whileβ-xylosidaseactivitywashighestat5%NaCl.Almosthalfofthemaximumactivitiesremainedat27%–30%NaClforbothenzymeactivities.Whendialyzedculturesupernatantandculturebrothwereemployedfordeterminationofβ-xylanaseandβ-xylosidasestabilities,approximately55%and83%oftheinitialβ-xylanaseandβ-xylosidaseactivities,respectively,remainedafter24hincubationat20%NaCl.Theenzymeswerealsoshowntobeslightlythermophilic;β-xylanaseactivityexhibitingtwooptimaat55°and70°C,whileβ-xylosidaseactivitywasoptimalat65°C.SDS-PAGEandzymogramtechniquesrevealedthepresenceoftwoxylan-degradingproteinsofapproximately45and67kDainculturesupernatants.Toourknowledge,thispaperisthefirstreportonhemicellulose-degradingenzymesproducedbyanextremelyhalophilicarchaeon.
TheoptimizationofsomeextracellularenzymesbiosynthesisbyAspergillusniger377-4.
Wikiera,A.,Mika,M.,Janiszewska,A.S.&Zyla,K.(2015).JournalofScientific&IndustrialResearch,74,145-149.
LinktoArticle
ReadAbstract
Theeffectofinitialsolidandmoisturecontents,temperatureandtimeofincubationontheproductionofpolygalacturonase,phytase,acidphosphatase,xylanaseandβ-glucanasebyAspergillusniger377-4duringsolidstatefermentationwasstudied.Parametersofenzymesynthesiswereoptimizedusingstatisticalexperimentaldesigns.Itwasshownthatthecapacityofstraintosynthesizetheaforementionedenzymescouldbemodifiedwithinawiderangebycultureparametersselection.Theoptimalpolygalacturonaseproductionefficiencywasachievedwiththeinitialmediummassof19.9gandhumidityof59.9%,after77.7hofincubationat28.9°C.Thebestcombinationofcultureparametersforphytasesynthesiswas:initialmediummass19.9g,moistures50%,temperature33°Candincubationtime83.9h.Thehighestactivityofacidphosphatasewasobtainedafter81.3hofincubationat27°C,withinitialsubstratemassof17.8gandmoistnesscontentof60%.Theinitialsolidandmoisturecontentstosynthesizexylanasewere19.9gand50%,respectively,withincubationtimeof73hat29.6°C.Thehighestefficiencyofβ-glucanasebiosynthesiswasobtainedwhenA.niger377-4wascultivatedfor80.4hat27°Conainitialmediummassof20gandinitiallevelofmoistness59.9%.
StructuralandfunctionalcharacterizationofanovelfamilyGH1154-O-methyl-α-glucuronidasewithspecificityfordecoratedarabinogalactans.
Aalbers,F.,Turkenburg,J.P.,Davies,G.J.,Dijkhuizen,L.&vanBueren,A.L.(2015).JournalofMolecularBiology,427(24),3935-3946.
LinktoArticle
ReadAbstract
Glycosidehydrolasesareclusteredintofamiliesbasedonaminoacidsequencesimilarities,andbelongingtoaparticularfamilycaninferbiologicalactivityofanenzyme.FamilyGH115containsα-glucuronidaseswhereseveralmembershavebeenshowntohydrolyzeterminalα-1,2-linkedglucuronicacidand4-O-methylatedglucuronicacidfromtheplantcellwallpolysaccharideglucuronoxylan.OtherGH115enzymesshownoactivityonglucuronoxylan,andtherefore,ithasbeenproposedthatfamilyGH115maybeapoly-specificfamily.Inthisstudy,werevealthataputativeperiplasmicGH115fromthehumangutsymbiontBacteroidesthetaiotaomicron,BtGH115A,hydrolyzesterminal4-O-methyl-glucuronicacidresiduesfromdecoratedarabinogalactanisolatedfromacaciatree.Thethree-dimensionalstructureofBtGH115ArevealsthatBtGH115Ahasthesamedomainarchitectureastheotherstructurallycharacterizedmemberofthisfamily,BoAgu115A;howeverthepositionoftheC-terminalmoduleisalteredwithrespecttoeachindividualenzyme.PhylogeneticanalysisofGH115aminosequencesdividesthefamilyintodistinctcladesthatmaydistinguishdifferentsubstratespecificities.Finally,weshowthatBtGH115Aα-glucuronidaseactivityisnecessaryforthesequentialdigestionofbranchedgalactansfromacaciagumbyagalactan-β-1,3-galactosidasefromfamilyGH43;however,whileB. thetaiotaomicrongrowsonlarchwoodarabinogalactan,thebacteriumisnotabletometabolizeacaciagumarabinogalactan,suggestingthatBtGH115Aisinvolvedindegradationofarabinogalactanfragmentsliberatedbyothermicrobialspeciesinthegastrointestinaltract.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegradingenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
Cellseparationinkiwifruitwithoutdevelopmentofaspecialiseddetachmentzone.
Prakash,R.,Hallett,I.C.,Wong,S.F.,Johnston,S.L.,O’Donoghue,E.M.,McAtee,P.A.,Seal,A.G.,Atkinson,R.G.&Schröder,R.(2017).BMCPlantBiology,17(1),86.
LinktoArticle
ReadAbstract
Background:Unlikeinabscissionordehiscence,fruitofkiwifruitActinidiaerianthadeveloptheabilityforpeeldetachmentwhentheyareripeandsoftintheabsenceofamorphologicallyidentifiableabscissionzone.Twoclosely-relatedgenotypeswithcontrastingdetachmentbehaviourhavebeenidentified.The‘good-peeling’genotypehasdetachmentwithcleandebondingofcells,andapeeltissuethatdoesnottear.The‘poor-peeling’genotypehaspoordetachability,withcellsthatruptureupondebonding,andpeeltissuethatfragmentseasily.Results:Structuralstudiesindicatedthatpeeldetachabilityinbothgenotypesoccurredintheouterpericarpbeneaththehypodermis.Immunolabellingshoweddifferencesinmethylesterificationofpectin,wheretheinterfaceoflabellingcoincidedwiththelocationofdetachmentinthegood-peelinggenotype,whereasinthepoor-peelinggenotype,nosuchinterfaceexisted.Thiszoneofdifferenceinmethylesterificationwasenhancedbydifferentialcellwallchangesbetweenthepeelandouterpericarptissue.Althoughbothgenotypesexpressedtwopolygalacturonasegenes,noenzymeactivitywasdetectedinthegood-peelinggenotype,suggestinglimitedpectinbreakdown,keepingcellwallsstrongwithouttearingorfragmentationofthepeelandfleshupondetachment.Differencesinlocationandamountsofwall-stiffeninggalactaninthepeelofthegood-peelinggenotypepossiblycontributedtothisphenotype.Hemicellulose-actingtransglycosylasesweremoreactiveinthegood-peelinggenotype,suggestinganinfluenceonpeelflexibilitybyremodellingtheirsubstratesduringdevelopmentofdetachability.Highxyloglucanaseactivityinthepeelofthegood-peelinggenotypemaycontributebyhavingastrengtheningeffectonthecellulose-xyloglucannetwork.Conclusions:InfruitofA.eriantha, peeldetachabilityisduetotheestablishmentofazoneofdiscontinuitycreatedbydifferentialcellwallchangesinpeelandouterpericarptissuesthatleadtochangesinmechanicalpropertiesofthepeel.Duringripening,thepeelbecomesflexibleandthecellscontinuetoadherestronglytoeachother,preventingbreakage,whereastheunderlyingouterpericarplosescellwallstrengthassofteningproceeds.Togethertheseresultsrevealanovelandinterestingmechanismforenablingcellseparation.
Diversityofmicrobialcarbohydrate-activeenzymesinDanishanaerobicdigestersfedwithwastewatertreatmentsludge.
Wilkens,C.,Busk,P.K.,Pilgaard,B.,Zhang,W.J.,Nielsen,K.L.,Nielsen,P.H.&Lange,L.(2017).BiotechnologyforBiofuels,10(1),158.
LinktoArticle
ReadAbstract
Background:Improvedcarbohydrate-activeenzymes(CAZymes)areneededtofulfillthegoalofproducingfood,feed,fuel,chemicals,andmaterialsfrombiomass.Littleisknownabouthowthediversemicrobialcommunitiesinanaerobicdigesters(ADs)metabolizecarbohydratesorwhichCAZymesthatarepresent,makingtheADsauniquenichetolookforCAZymesthatcanpotentiatetheenzymeblendscurrentlyusedinindustry.Results:EnzymaticassaysshowedthatfunctionalCAZymesweresecretedintotheADenvironmentsinfourfull-scalemesophilicDanishADsfedwithprimaryandsurplussludgefrommunicipalwastewatertreatmentplants.MetagenomesfromtheADswereminedforCAZymeswithHomologytoPeptidePatterns(HotPep).19,335CAZymeswereidentifiedofwhich30%showed50%orloweridentitytoknownproteinsdemonstratingthatADsmakeupapromisingpoolfordiscoveryofnovelCAZymes.Afunctionwasassignedto54%ofallCAZymesidentifiedbyHotPep.Manydifferentα-glucan-actingCAZymeswereidentifiedinthefourmetagenomes,andthemostabundantfamilywasglycosidehydrolasefamily13,whichcontainsα-glucan-actingCAZymes.CellulyticandxylanolyticCAZymeswerealsoabundantinthefourmetagenomes.Thecellulyticenzymeswerelimitedalmosttoendoglucanasesandβ-glucosidases,whichreflectthelargeamountofpartlydegradedcelluloseinthesludge.NodockerindomainswereidentifiedsuggestingthatthecellulyticenzymesintheADsstudiedoperateindependently.OfxylanolyticCAZymes,especiallyxylanasesandβ-xylosidase,butalsoabatteryofaccessoryenzymes,werepresentinthefourADs.Conclusions:OurfindingssuggestthattheADsareagoodplacetolookfornovelplantbiomassdegradingandmodifyingenzymesthatcanpotentiatebiologicalprocessesandprovidebasisforproductionofarangeofadded-valueproductsfrombiorefineries.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们