Megazyme/AZCL阿拉伯木聚糖(小麦)/I-AZWAX/3克
商品编号:
I-AZWAX
品牌:
Megazyme INC
市场价:
¥3576.00
美元价:
2145.60
产品分类:
反应底物
公司分类:
Reaction_substrate
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpuritydyedandcrosslinkedinsolubleAZCL-ArABInoxylan(Wheat)foridentificationofenzymeactivitiesinresearch,microBIOLOGicalenzymeassaysandinvitrodiagnosticanalysis.
Dyedandcrosslinkedwheatarabinoxylan.Substratefortheassayofendo-1,4-β-D-xylanase.
Advantagesofisothermaltitrationcalorimetryforxylanasekineticsincomparisontochemical-reducing-endassays.
Baumann,M.J.,Murphy,L.,Lei,N.,Krogh,K.B.R.M.,Borch,K.&Westh,P.(2011).AnalyticalBiochemistry,410(1),19-26.
LinktoArticle
ReadAbstract
Inlignocellulosicrawmaterialsforbiomassconversion,hemicellulosesconstituteasubstantialfraction,withxylanbeingtheprimarypart.Althoughmanypretreatmentsreducetheamountorchangethedistributionofxylan,itisimportanttodegraderesidualxylansoastoimprovetheoverallyield.Typically,xylanasereactionratesaremeasuredinstoppedassaysbychemicalquantificationofthereducingends.Withisothermaltitrationcalorimetry(ITC),theheatflowofthehydrolysiscanbemeasuredincontinuousfashion,withthereactionratebeingdirectlyproportionaltotheheatflow.Reactionenthalpiesforcarbohydratehydrolysisaretypicallybelow5kJ/mol,whichisthelimitingfactorforstraightforwardcalorimetricquantificationofenzymaticreactionratesusingcurrentITCtechnology.Toincreasetheapparentreactionenthalpy,weemployedasubsequentoxidationofhydrolysisproductsbycarbohydrateoxidaseandcatalase.HereweshowthatthecoupledassaywithcarbohydrateoxidaseandcatalasecanbeusedtomeasureenzymekineticsofaGH10xylanasefromAspergillusaculeatusonbirchxylanandwheatarabinoxylan.Resultsarediscussedinthelightofacriticalanalysisofthesensitivityoffourchemical-reducing-endquantificationmethodsusingwell-characterizedsubstrates.
Insightintothedistributionofarabinoxylans,endoxylanases,andendoxylanaseinhibitorsinindustrialwheatrollermillstreams.
Dornez,E.,Gebruers,K.,Wiame,S.,Delcour,J.A.&Courtin,C.M.(2006).JournalofAgriculturalandFoodChemistry,54(22),8521-8529.
LinktoArticle
ReadAbstract
Togaininsightintothedistributionofarabinoxylans(AX),endoxylanases,andendoxylanaseinhibitorsinindustrialwheatrollermilling,allstreams,thatis,54flourfractions,4branfractions,andthegerm,wereanalyzedforash,starch,andproteincontents,α-amylaseactivitylevels,total(TOT-AX)andwater-extractablearabinoxylan(WE-AX)contents,endoxylanaseactivitylevels,andendoxylanaseinhibitor(TAXIandXIP)contents.Ingeneral,branfractionsweresignificantlyricherinTOT-AXandWE-AXcontents,endoxylanaseactivitylevels,andendoxylanaseinhibitorcontentsthangermand,evenmoreso,thanflourfractions.Inthe54differentflourfractions,minimalandmaximalvaluesforTOT-AXandWE-AXcontentsdifferedbyca.2-fold,whereastheydifferedbyca.15-foldforendoxylanaseactivitylevels.Thelatterwerepositivelycorrelatedwithashandnegativelycorrelatedwithstarchcontent,suggestingthattheendoxylanaseactivityinflourisstronglyinfluencedbythelevelofbrancontamination.TAXIcontentsintheflourfractionsvariedca.4-foldandwerestronglycorrelatedwithbran-relatedparameterssuchasashcontentandenzymeactivitylevels,whereasXIPcontentsvariedca.3-foldandwerenotcorrelatedwithanyoftheparametersmeasuredinthisstudy.Theresultscanbevaluableinblendingandoptimizingwheatflourfractionstoobtainflourswithspecifictechnologicalandnutritionalbenefits.
Purificationandcharacterisationoftwoextremelyhalotolerantxylanasesfromanovelhalophilicbacterium.
Wejse,P.L.,Ingvorsen,K.&Mortensen,K.K.(2003).Extremophiles,7(5),423-431.
LinktoArticle
ReadAbstract
Thepresentworkreportsforthefirsttimethepurificationandcharacterisationoftwoextremelyhalotolerantendo-xylanasesfromanovelhalophilicbacterium,strainCL8.Purificationofthetwoxylanases,Xyl1and2,wasachievedbyanionexchangeandhydrophobicinteractionchromatography.Theenzymeshadrelativemolecularmassesof43kDaand62kDaandpIof5.0and3.4respectively.StimulationofactivitybyCa+2,Mn+2,Mg+2,Ba+2,Li+2,NaN3,andisopropanolwasobserved.TheKmandVmaxvaluesdeterminedforXyl1with4-O-methyl-D-glucuronoxylanare5mg/mland125,000nkat/mgrespectively.ThecorrespondingvaluesforXyl2were1mg/mland143,000nkat/mgprotein.Xylobioseandxylotriosewerethemajorendproductsforbothendoxylanases.ThexylanaseswerestableatpH4–11showingpHoptimaaroundpH6.Xyl1showsmaximalactivityat60°C,Xyl2at65°C(at4MNaCl).Thexylanasesshowedhightemperaturestabilitywithhalf-livesat60°Cof97minand192minrespectively.Bothxylanasesshowedoptimalactivityat1MNaCl,butsubstantialactivityremainedforbothenzymesat5MNaCl.
PlantcellwalldegradationwithapowerfulFusariumgraminearumenzymaticarsenal.
Phalip,V.,Goubet,F.,Carapito,R.&Jeltsch,J.M.(2009).JMicrobiolBiotechnol,19(6),573-581.
LinktoArticle
ReadAbstract
ThecomplexenzymepoolsecretedbythephytopathogenicfungusFusariumgraminearuminresponsetoglucoseorhopcellwallmaterialassolecarbonsourceswasanalyzed.Thebiochemicalcharacterizationoftheenzymespresentinthesupernatantoffungalculturesintheglucosemediumrevealedonly5differentglycosylhydrolaseactivities;bycontrast,whenanalyzingculturesinthecellwallmedium,17differentactivitiesweredetected.Thisdramaticincreasereflectstheadaptationofthefungusbythesynthesisofenzymestargetingalllayersofthecellwall.Whentheenzymessecretedinthepresenceofplantcellwallwereusedtohydrolyzepretreatedcrudeplantmaterial,highlevelsofmonosaccharidesweremeasuredwithyieldsapproaching50%oftotalsugarsreleasedbyanacidhydrolysisprocess.Thisreportisthefirstbiochemicalcharacterizationofnumerouscellulases,hemicellulases,andpectinasessecretedbyF.graminearumanddemonstratestheusefulnessofthedescribedproteincocktailforefficientenzymaticdegradationofplantcellwall.
DevelopmentofanimprovedvariantofGH51α-L-arabinofuranosidasefromPleurotusostreatusbydirectedevolution.
Giacobbe,S.,Vincent,F.&Faraco,V.(2014).NewBiotechnology,31(3),230-236.
LinktoArticle
ReadAbstract
Inthisstudy,theα-L-arabinofuranosidasefromPleurotusostreatuswassubjectedtodirectedevolutionbyexpressingalibraryofaround7000randomlymutatedvariantsbyerrorpronePolymeraseChainReaction.High-throughputscreeningofthelibraryforthemostactivevariantswasperformedbyassayingactivitytowardsp-nitrophenylα-L-arabinofuranoside,andavariantwithhigheractivitythanthewildtypewasselected,purifiedandcharacterised.ItexhibitedaKcatof7.3×103±0.3min-1,around3-foldhigherthanthatofthewildtype(2.2×103±0.2min-1),andaKM(0.54±0.06mM)30%lowerthanthatofthewildtype(0.70±0.05mM)towardsthissubstrate.ThemutantalsoshowedimprovedcatalyticpropertiestowardspNP-β-D-glucopyranoside(Kcatof50.85±0.21min−1versus11.0±0.6min-1)anditwasshownabletohydrolyselarcharabinogalactanwhichisnotrecognisedbythewildtype.Themutantwasalsomoreactivethanthewildtypetowardsarabinoxylanandwasabletohydrolysearabinan,whichwasnottransformedbythewildtype.TheabilityofrPoAbfF435Y/Y446Ftohydrolysetheseinsolublesubstratesexpandsitspotentialforapplicationalsotohemicelluloses,whichinsometypesofpretreatmentarerecoveredinsolidfractions.
Onsiteenzymeproductionduringbioethanolproductionfrombiomass:screeningforsuitablefungalstrains.
Sørensen,A.,Teller,P.J.,Lübeck,P.S.&Ahring,B.K.(2011).AppliedBiochemistryandBiotechnology,164(7),1058-1070.
LinktoArticle
ReadAbstract
Cellulosicethanolproductionfrombiomassrawmaterialsinvolvesprocessstepssuchaspre-treatment,enzymatichydrolysis,fermentation,anddistillation.Useofstreamswithincellulosicethanolproductionwasexploredforonsiteenzymeproductionaspartofabiorefineryconcept.Sixty-fourfungalisolateswereinplateassaysscreenedforlignocellulolyticactivitiestodiscoverthemostsuitablefungalstrainwithefficienthydrolyticenzymesforlignocelluloseconversion.Twenty-fivewereselectedforfurtherenzymeactivitystudiesusingastreamderivedfromthebioethanolprocess.Thefiltercakeleftafterhydrolysisandfermentationwaschosenassubstrateforenzymeproduction.Fiveofthe25isolateswerefurtherselectedforsynergystudieswithcommercialenzymes,Celluclast1.5LandNovozym188.Finally,IBT25747(Aspergillusniger)andstrainAP(CBS127449,Aspergillussaccharolyticus)werefoundaspromisingcandidatesforonsiteenzymeproductionwherethefiltercakewasinoculatedwiththerespectivefungusandincombinationwithCelluclast1.5Lusedforhydrolysisofpre-treatedbiomass.
Evaluationofcellulolyticandhemicellulolyticabilitiesoffungiisolatedfromcoffeeresidueandsawdustcomposts.
Eida,M.F.,Nagaoka,T.,Wasaki,J.&Kouno,K.(2011).MicrobesEnviron,26(3),220-227.
LinktoArticle
ReadAbstract
Thisstudyfocusedontheevaluationofcellulolyticandhemicellulolyticfungiisolatedfromsawdustcompost(SDC)andcoffeeresiduecompost(CRC).Toidentifyfungalisolates,theITSregionoffungalrRNAwasamplifiedandsequenced.Toevaluateenzymeproduction,isolateswereinoculatedontowheatbranagarplates,andenzymeswereextractedandtestedforcellulase,xylanase,β-glucanase,mannanase,andproteaseactivitiesusingdifferentazurinecross-linked(AZCL)substrates.Intotal,18isolatesfromSDCand29isolatesfromCRCwereidentifiedandevaluated.Fourgenera(Aspergillus,Galactomyces,Mucor,andPenicillium)andfivegenera(Aspergillus,Coniochaeta,Fusarium,Penicillium,andTrichoderma/Hypocrea)weredominantinSDCandCRC,respectively.Penicilliumsp.,Trichodermasp.,andAspergillussp.displayedhighcellulolyticandhemicellulolyticactivities,whileMucorisolatesexhibitedthehighestβ-glucanaseandmannanaseactivities.TheenzymeanalysesrevealedthatPenicillium,Aspergillus,andMucorisolatessignificantlycontributedtothedegradationofSDC,whereasPenicillium,Aspergillus,andTrichodermaisolateshadadominantroleinthedegradationofCRC.Notably,isolatesSDCF5(P.crustosum),CRCF6(P.verruculosum),andCRCF2andCRCF16(T.harzianum/H.lixii)displayedhighactivityregardingcelluloseandhemicellulosedegradation,whichindicatesthatthesespeciescouldbebeneficialfortheimprovementofbiodegradationprocessesinvolvinglignocellulosicmaterials.
TheCarbohydrateMetabolismSignatureofLactococcuslactisStrainA12RevealsItsSourdoughEcosystemOrigin.
Passerini,D.,Coddeville,M.,LeBourgeois,P.,Loubière,P.,Ritzenthaler,P.,Fontagné-Faucher,C.,Daveran-Mingot,M.L.&Cocaign-Bousquet,M.(2013).AppliedandEnvironmentalMicrobiology,79(19),5844-5852.
LinktoArticle
ReadAbstract
Lactococcuslactissubsp.lactisstrainA12wasisolatedfromsourdough.Combinedgenomic,transcriptomic,andphenotypicanalyseswereperformedtounderstanditssurvivalcapacityinthecomplexsourdoughecosystemanditsroleinthemicrobialcommunity.ThegenomesequencecomparisonofstrainA12withstrainIL1403(aderivativeofanindustrialdairystrain)revealed78strain-specificregionsrepresenting23%ofthetotalgenomesize.Mostofthestrain-specificgeneswereinvolvedincarbohydratemetabolismandarepotentiallyrequiredforitspersistenceinsourdough.Phenotypemicroarray,growthtests,andanalysisofglycosidehydrolasecontentshowedthatstrainA12fermentedplant-derivedcarbohydrates,suchasarabinoseandα-galactosides.StrainA12exhibitedspecificgrowthratesonraffinosethatwereashighastheywereonglucoseandwasabletoreleasesucroseandgalactoseoutsidethecell,providingsolublecarbohydratesforsourdoughmicroflora.Transcriptomicanalysisidentifiedgenesspecificallyinducedduringgrowthonraffinoseandarabinoseandrevealsanalternativepathwayforraffinoseassimilationtothatusedbyotherlactococci.
ExpandingtheferuloylesterasegenefamilyofAspergillusnigerbycharacterizationofaferuloylesterase,FaeC.
Dilokpimol,A.,Mäkelä,M.R.,Mansouri,S.,Belova,O.,WaterstrAAT,M.,Bunzel,M.,deVries,R.P.&Hildén,K.S.(2017).NewBiotechnology,37,200-209.
LinktoArticle
ReadAbstract
Aferuloylesterase(FAE)fromAspergillusnigerN402,FaeCwasheterologouslyproducedinPichiapastorisX-33inayieldof10 mg/L.FaeCwasmostactiveatpH7.0and50°C,andshowedbroadsubstratespecificityandcatalyzedthehydrolysisofmethyl3,4-dimethoxycinnamate,ethylferulate,methylferulate,methylp-coumarate,ethylcoumarate,methylsinapate,andmethylcaffeate.Theenzymereleasedbothferulicacidandp-coumaricacidfromwheatarabinoxylanandsugarbeetpectin(upto3 mg/gpolysaccharide),andactedsynergisticallywithacommercialxylanaseincreasingthereleaseofferulicaciduptosix-fold.TheexpressionoffaeCincreasedovertimeinthepresenceofferuloylatedpolysaccharides.Cinnamic,syringic,caffeic,vanillicandferulicacidinducedtheexpressionoffaeC.OverallexpressionoffaeCwasverylowinalltestedconditions,comparedtotwootherA.nigerFAEencodinggenes,faeAandfaeB.OurdatashowedthatthefaegenesrespondeddifferentlytowardstheferuloylatedpolysaccharidesandtestedmonomericphenoliccompoundssuggestingthatthecorrespondingFAEisoenzymesmaytargetdifferentsubstratesinacomplementarymanner.Thismayincreasetheefficiencyofthedegradationofdiverseplantbiomass.
Aspergillushancockiisp.nov.,abiosyntheticallytalentedfungusendemictosoutheasternAustraliansoils.
Pitt,J.I.,Lange,L.,Lacey,A.E.,Vuong,D.,Midgley,D.J.,Greenfield,P.,Bradbury,M.I.,Lacey,E.,Busk,P.K.,Pilgaard,B.,Chooi,Y.H.&Piggott,A.M.(2017).PloSOne,12(4),e0170254.
LinktoArticle
ReadAbstract
Aspergillushancockiisp.nov.,classifiedinAspergillussubgenusCircumdatisectionFlavi,wasoriginallyisolatedfromsoilinpeanutfieldsnearKumbia,intheSouthBurnettregionofsoutheastQueensland,Australia,andhassincebeenfoundoccasionallyfromothersubstratesandlocationsinsoutheastAustralia.ItisphylogeneticallyandphenotypicallyrelatedmostcloselytoA. leporisStatesandM.Chr.,butdiffersinconidialcolour,otherminorfeaturesandparticularlyinmetaboliteprofile.Whencultivatedonriceasanoptimalsubstrate,A. hancockiiproducedanextensivearrayof69secondarymetabolites.Elevenofthe15mostabundantsecondarymetabolites,constituting90%ofthetotalareaunderthecurveoftheHPLCtraceofthecrudeextract,werenovel.ThegenomeofA. hancockii,approximately40Mbp,wassequencedandminedforgenesencodingcarbohydratedegrADIngenzymesidentifiedthepresenceofmorethan370genesin114geneclusters,demonstratingthatA. hancockiihasthecapacitytodegradecellulose,hemicellulose,lignin,pectin,starch,chitin,cutinandfructanasnutrientsources.LikemostAspergillusspecies,A. hancockiiexhibitedadiversesecondarymetabolitegeneprofile,encoding26polyketidesynthase,16nonribosomalpeptidesynthaseand15nonribosomalpeptidesynthase-likeenzymes.
Diversityofmicrobialcarbohydrate-activeenzymesinDanishanaerobicdigestersfedwithwastewatertreatmentsludge.
Wilkens,C.,Busk,P.K.,Pilgaard,B.,Zhang,W.J.,Nielsen,K.L.,Nielsen,P.H.&Lange,L.(2017).BiotechnologyforBiofuels,10(1),158.
LinktoArticle
ReadAbstract
Background:Improvedcarbohydrate-activeenzymes(CAZymes)areneededtofulfillthegoalofproducingfood,feed,fuel,chemicals,andmaterialsfrombiomass.Littleisknownabouthowthediversemicrobialcommunitiesinanaerobicdigesters(ADs)metabolizecarbohydratesorwhichCAZymesthatarepresent,makingtheADsauniquenichetolookforCAZymesthatcanpotentiatetheenzymeblendscurrentlyusedinindustry.Results:EnzymaticassaysshowedthatfunctionalCAZymesweresecretedintotheADenvironmentsinfourfull-scalemesophilicDanishADsfedwithprimaryandsurplussludgefrommunicipalwastewatertreatmentplants.MetagenomesfromtheADswereminedforCAZymeswithHomologytoPeptidePatterns(HotPep).19,335CAZymeswereidentifiedofwhich30%showed50%orloweridentitytoknownproteinsdemonstratingthatADsmakeupapromisingpoolfordiscoveryofnovelCAZymes.Afunctionwasassignedto54%ofallCAZymesidentifiedbyHotPep.Manydifferentα-glucan-actingCAZymeswereidentifiedinthefourmetagenomes,andthemostabundantfamilywasglycosidehydrolasefamily13,whichcontainsα-glucan-actingCAZymes.CellulyticandxylanolyticCAZymeswerealsoabundantinthefourmetagenomes.Thecellulyticenzymeswerelimitedalmosttoendoglucanasesandβ-glucosidases,whichreflectthelargeamountofpartlydegradedcelluloseinthesludge.NodockerindomainswereidentifiedsuggestingthatthecellulyticenzymesintheADsstudiedoperateindependently.OfxylanolyticCAZymes,especiallyxylanasesandβ-xylosidase,butalsoabatteryofaccessoryenzymes,werepresentinthefourADs.Conclusions:OurfindingssuggestthattheADsareagoodplacetolookfornovelplantbiomassdegradingandmodifyingenzymesthatcanpotentiatebiologicalprocessesandprovidebasisforproductionofarangeofadded-valueproductsfrombiorefineries.
BiochemicalandstructuralanalysesoftwocrypticesterasesinBacteroidesintestinalisandtheirsynergisticactivitieswithcognatexylanases.
Wefers,D.,Cavalcante,J.J.,Schendel,R.R.,Deveryshetty,J.,Wang,K.,Wawrzak,Z.,Mackie,R.I.,Korotkin,N.M.&Cann,I.(2017).JournalofMolecularBiology,429(16),2509-2527.
LinktoArticle
ReadAbstract
Arabinoxylansareconstituentsofthehumandiet.Althoughnotutilizablebythehumanhost,theycanbefermentedbycolonicbacteria.Thearabinoxylanbackboneisdecoratedwitharabinosesidechainsthatmaybesubstitutedwithferulicacid,thuslimitingdepolymerizationtofermentablesugars.WeinvestigatedthepolypeptidesencodedbytwogenesupregulatedduringgrowthofthecolonicbacteriumBacteroidesintestinalisonwheatarabinoxylan.Therecombinantproteins,designatedBiFae1AandBiFae1B,werefunctionallyassignedesteraseactivities.Bothenzymeswereactiveonacetylatedsubstrates,althougheachshowedahigherferulicacidesteraseactivityonmethyl-ferulate.BiFae1Ashowedacatalyticefficiencyof12 mMs-1onpara-nitrophenyl-acetate,andonmethyl-ferulate,thevaluewas27timeshigher.BiFae1Bshowedlowcatalyticefficienciesforbothsubstrates.FurThermore,thetwoenzymesreleasedferulicacidfromvariousstructuralelements,andNMRspectroscopyindicatedcompletede-esterificationofarabinoxylanoligosaccharidesfromwheatbran.BiFae1Aisatetramerbasedonthecrystalstructure,whereasBiFae1Bisadimerinsolutionbasedonsizeexclusionchromatography.ThestructureofBiFae1Awassolvedto1.98 Åresolution,andtwotetramerswereobservedintheasymmetricunit.AflexIBLeloopthatmayactasahingeovertheactivesiteandlikelycoordinatescriticalinteractionswiththesubstratewasprominentinBiFae1A.SequencealignmentsoftheesterasedomainsinBiFae1BwiththeferuloylesterasefromClostridiumthermocellumsuggestthatbothdomainslacktheflexiblehingeinBiFae1A,anobservationthatmaypartlyprovideamolecularbasisforthedifferencesinactivitiesinthetwoesterases.
MetatranscriptomicsRevealstheFunctionsandEnzymeProfilesoftheMicrobialCommunityinChineseNong-FlavorLiquorStarter.
Huang,Y.,Yi,Z.,Jin,Y.,Huang,M.,He,K.,Liu,D.,Luo,H.,Zhao,D.,He,H.,Fang,Y.&Zhao,H.(2017).FrontiersinMicrobiology,8,1747.
LinktoArticle
ReadAbstract
Chineseliquorisoneoftheworld"sbest-knowndistilledspiritsandisthelargestspiritcategorybysales.Theuniqueandtraditionalsolid-statefermentationtechnologyusedtoproduceChineseliquorhasbeenincontinuoususeforseveralthousandyears.Thediverseanddynamicmicrobialcommunityinaliquorstarteristhemaincontributortoliquorbrewing.However,littleisknownabouttheecologicaldistributionandfunctionalimportanceofthesecommunitymembers.Inthisstudy,metatranscriptomicswasusedtocomprehensivelyexploretheactivemicrobialcommunitymembersandkeytranscriptswithsignificantfunctionsintheliquorstarterproductionprocess.Fungiwerefoundtobethemostabundantandactivecommunitymembers.Atotalof932carbohydrate-activeenzymes,includinghighlyexpressedauxiliaryactivityfamily9and10proteins,wereidentifiedat62°Cunderaerobicconditions.Somepotentialthermostableenzymeswereidentifiedat50,62,and25°C(maturestage).Increasedcontentandoverexpressedkeyenzymesinvolvedinglycolysisandstarch,pyruvateandethanolmetabolismweredetectedat50and62°C.Thekeyenzymesofthecitratecyclewereup-regulatedat62°C,andtheirabundantderivativesarecrucialforflavorgeneration.Here,themetabolismandfunctionalenzymesoftheactivemicrobialcommunitiesinNFliquorstarterwerestudied,whichcouldpavethewaytoinitiateimprovementsinliquorqualityandtodiscovermicrobesthatproducenovelenzymesorhigh-valueaddedproducts.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们