
Megazyme/CM-Curdlan/P-CMCUR/4克
商品编号:
P-CMCUR
品牌:
Megazyme INC
市场价:
¥3576.00
美元价:
2145.60
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityCM-Curdlanforuseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Curdlan(a1,3-β-D-glucan)carboxymethylatedtoanextentofDS~0.4withchloroaceticacid.Thepolymeriscompletelysolubletogiveanexcellentsubstratefortheassayofendo-1,3-β-D-glucanasebyreducing-sugarorviscometricprocedures.
Improvementofthelyticpropertiesofaβ-1,3-glucanasebydirectedevolution.
Salazar,O.,Basso,C.,Barba,P.,Orellana,C.&Asenjo,J.A.(2006).MolecularBiotechnology,33(3),211-219.
LinktoArticle
ReadAbstract
BGLIIisabacterialendoglucanasethathydrolyzestheβ-1,3-glucanpresentinyeastcellwalls,resultinginlysisofSaccharomycescerevisiae.Asaresultofthisproperty,BGLIIisconsideredapotentialtoolfordownstreamprocessingandrecoveryofbiotechnologicalproductsproducedinyeast.HerewedescribetheimprovementoftheyeastlyticactivityofBGLII,achievedbyadirectedevolutionapproachinvolvingrandommutagenesisandscreeningforvariantswithimprovedcatalyticactivity,combinedwithsite-directedmutagenesis.ABGLIIvarianthavingthreetimesthewild-typehydrolyticactivityonlaminarinwasidentified.Thepurifiedenzymealsoexhibitedhigherlyticactivityonyeastcells.Mutationscausingtheimprovementsarelocatedveryclosetoeachotherintheaminoacidsequence,suggestingthattheregionshouldbeconsideredasatargetforfurtherimprovementsoftheglucanaseactivity.TheseresultsdemonstratethefeasibilityofmolecularevolutionmethodsfortheimprovementoftheBGLIIhydrolyticactivity,andopenawindowforfurtherimprovementofthisorotherpropertiesinglycosylhydrolasesingeneral.
Endo-β-1,3-glucanaseGLU1,fromthefruitingbodyofLentinulaedodes,belongstoanewglycosidehydrolasefamily.
Sakamoto,Y.,Nakade,K.&Konno,N.(2011).AppliedandEnvironmentalMicroBIOLOGy,77(23),8350-8354.
LinktoArticle
ReadAbstract
ThecellwallofthefruitingbodyofthemushroomLentinulaedodesisdegradedafterharvestingbyenzymessuchasβ-1,3-glucanase.Inthisstudy,anovelendo-typeβ-1,3-glucanase,GLU1,waspurifiedfromL.edodesfruitingbodiesafterharvesting.Thegeneencodingit,glu1,wasisolatedbyrapidamplificationofCDNAends(RACE)-PCRusingprimersdesignedfromtheN-terminalaminoacidsequenceofGLU1.Theputativeaminoacidsequenceofthematureproteincontained247aminoacidresidueswithamolecularmassof26kDaandapIof3.87,andrecombinantGLU1expressedinPichiapastorisexhibitedβ-1,3-glucanaseactivity.GLU1catalyzeddepolymerizationofglucanscomposedofβ-1,3-linkedmainchains,andreactionproductanalysisbythin-layerchromatography(TLC)clearlyindicatedthattheenzymehadanendolyticmode.However,theaminoacidsequenceofGLU1showednosignificantsimilaritytoknownglycosidehydrolases.GLU1hassimilaritytoseveralhypotheticalproteinsinfungi,andGLU1andhighlysimilarproteinsshouldbeclassifiedasanovelglycosidehydrolasefamily(GH128).
Production,purificationandapplication-relevantcharacterisationofanendo-1,3(4)-β-glucanasefromRhizomucormiehei.
Boyce,A.&Walsh,G.(2007).AppliedMicrobiologyandBiotechnology,76(4),835-841.
LinktoArticle
ReadAbstract
Growthonawheatbranmediainducedproductionofanextracellularβ-glucanasebyRhizomucormiehei(DSM1330).Theenzymewaspurifiedtohomogeneity.Substratespecificitystudiescoupledwithproteindatabasesimilaritysearchingusingmassspectrometry-derivedsequencedataindicateittobeanendo-1,3(4)-β-glucanase(EC3.2.1.6).TheenzymewascharacterisedintermsofpotentialsuitABIlityforuseinanimal(poultry)feed.SignificantactivitywasobservedovertheentirepHrangetypicaloftheavianupperdigestivetract(pH2.6–6.5).TheenzymewasalsofoundtobemoreThermostablethancurrentcommercializedβ-glucanases,particularlywhenheatedatahighenzymeconcentration,andretainedtwiceasmuchresidualactivityasthelatteruponexposuretosimulatedaviandigestivetractconditions.Therearenopreviousreportsoftheproduction,purificationorcharacterizationofaβ-glucanasefromaRhizomucor,andtheenzyme’sapplication-relevantphysicochemicalcharacteristicsrenderitpotentiallysuitedforuseinanimalfeed.
ImmunityorDigestion:GlucanaseactivityinaGlucan-bindingproteinfamilyfromLepidoptera.
Pauchet,Y.,Freitak,D.,Heidel-Fischer,H.M.,Heckel,D.G.&Vogel,H.(2009).JournalofBiologicalChemistry,284(4),2214-2224.
LinktoArticle
ReadAbstract
Thecellsurfacesofmicroorganismsdisplaydistinctmolecularpatternsformedfromlipopolysaccharides,peptidoglycans,orβ1,3-glucans.Bindingofthesesurfacesbypatternrecognitionproteinssuchasβ1,3-glucanrecognitionproteins(βGRPs)activatestheimmuneresponseinarthropods.Weidentifieda40-kDaβ1,3-glucan-bindingproteinwithsequencesimilaritytopreviouslycharacterizedlepidopteranβGRPsfromhemolymph,butunliketheseitissecretedintothelarvalgutlumenandisanactiveβ1,3-glucanase.Thisglucanasewasnotdetectedinhemolymph.ItsmRNAisconstitutivelyandpredominantlyexpressedinthemidgutandisinducedtherewhenlarvaefeedonadietcontainingbacteria.Homologsofthispredominantlymidgut-expressedgenefrommanyLepidopterapossesskeyresiduesshowntobepartoftheactivesiteofotherglucanases,andformaclusterthatisdistinctfrompreviouslydescribedβGRPs.Inaddition,thisgroupincludesproteinsfrominsectssuchastheAnophelesgambiaeGNBPsubgroupBforwhichacatalyticrolehasnotbeenpreviouslysUSPected.Thecurrentdomainclassificationdoesnotdistinguishbetweenthecatalyticandnoncatalyticclades,andshouldberevised.ThenoncatalyticβGRPsmaybeevolutionarilyderivedfromthisnewlydescribedenzymefamilythatcontinuestofunctioncatalyticallyindigestionand/orpathogendefense.
Higherorderstructuresofabioactive,water-soluble(1→3)-β-D-glucanderivedfromSaccharomycescerevisiae.
Qin,F.,Sletmoen,M.,Stokke,B.T.&Christensen,B.E.(2013).CarbohydratePolymers,92(2),1026-1032.
LinktoArticle
ReadAbstract
Water-soluble(1→3)-β-D-glucanswith1,6-linkedbranches(SBG),originallyisolatedfromthecellwallsofSaccharomycescerevisiaeandpartiallydepolymerisedtoaweightaveragedegreeofpolymerisation(DPw)intherange120–160foroptimalperformanceinwoundhealingapplications,werestudiedbydynamiclightscattering(DLS),SECMALLSandAFM.ResultsindicatethatdiluteaqueousSBGsolutions(1µg/mlto3mg/ml)containhigherorderstructureswithaverywidesizedistributioninwater(10–500nm),correspondingtoamixtureofsinglechains,multi-chainaggregatesincludingtriple-strandedmotifs,andparticulatematerials.Thelatterwereenrichedinlongerchainscomparedtonon-particulatefractions.ThesizedistributionofSBGaggregatesshiftedtoslightlylowervaluesuponheating,butshowedhysteresisuponcooling.AFMimagespreparedfromverydiluteaqueoussolution(1–5µg/ml)analysisshowedbycomparisontoother(1→3)-β-D-glucansthatsomeofthestructureswerethetriplehelicalspeciescoexistingwithlargeraggregatesandsinglechains,incontrasttocarboxymethylatedSBG,whichcontainedpredominantlysinglechains.TheabilitytocontroltheaggregationbehaviourofSBGenablestailoringofthephysical,andpossIBLybioactive,propertiesofSBGpreparations.
ConservedCysresidueinfluencescatalyticpropertiesofpotatoendo-(1→3)-β-glucanaseGLUB20-2.
Witek,A.I.,Witek,K.&Hennig,J.(2008).ActaBiochimicaPolonica,55(4),791-797.
LinktoArticle
ReadAbstract
Thesynthesisanddegradationof(1→3)-β-glycosidicbondsbetweenglucosemoietiesareessentialmetabolicprocessesinplantcellarchitectureandfunction.Wehavefoundthataunique,conservedcysteineresidue,positionedoutsidethecatalyticcentreofpotatoendo-(1→3)-β-glucanase—productofthegluB20-2gene,participatesindeterminingthesubstratespecificityoftheenzyme.Thesameresidueislargelyresponsibleforendo-(1→3)-β-glucanaseinhibitionbymercuryions.Ourresultsconfirmthatthespatialadjustmentbetweenanenzymeanditssubstrateisoneoftheessentialfactorscontributingtothespecificityandaccuracyofenzymaticreactions.
Anovelglycosylphosphatidylinositol-anchoredglycosidehydrolasefromUstilagoesculentafunctionsinβ-1,3-glucandegradation.
Nakajima,M.,Yamashita,T.,Takahashi,M.,Nakano,Y.&Takeda,T.(2012).AppliedandEnvironmentalMicrobiology,78(16),5682-5689.
LinktoArticle
ReadAbstract
AglycosidehydrolaseresponsibleforlaminarindegradationwaspartiallypurifiedtohomogeneityfromaUstilagoesculentaculturefiltratebyweak-cation-exchange,strong-cation-exchange,andsize-exclusionchromatography.Threeproteinsinenzymaticallyactivefractionsweredigestedwithchymotrypsinfollowedbyliquidchromatography-tandemmassspectrometry(LC/MS/MS)analysis,resultingintheidentificationofthreepeptidesequencesthatsharedsignificantsimilaritytoaputativeβ-1,3-glucanase,amemberofglucosidehydrolasefamily16(GH16)fromSporisoriumreilianumSRZ2.Ageneencodingalaminarin-degrADIngenzymefromU.esculenta,lam16A,wasisolatedbyPCRusingdegenerateprimersdesignedbasedontheS.reilianumSRZ2β-1,3-glucanasegene.Lam16ApossessesaGH16catalyticdomainwithanN-terminalsignalpeptideandaC-terminalglycosylphosphatidylinositol(GPI)anchorpeptide.RecombinantLam16AfusedtoanN-terminalFLAGpeptide(Lam16A-FLAG)overexpressedinAspergillusoryzaeexhibitedhydrolyticactivitytowardβ-1,3-glucanspecificallyandwaslocalizedbothintheextracellularandinthemembranefractionsbutnotinthecellwallfraction.Lam16AwithoutaGPIanchorsignalpeptidewassecretedextracellularlyandwasnotdetectedinthemembranefraction.Membrane-anchoredLam16A-FLAGwasreleasedcompletelybytreatmentwithphosphatidylinositol-specificphospholipaseC.TheseresultssuggestthatLam16Aisanchoredintheplasmamembraneinordertomodifyβ-1,3-glucanassociatedwiththeinnercellwallandthatLam16Aisalsousedforthecatabolismofβ-1,3-glucanafteritsreleaseintheextracellularmedium.
Chainlengthdistributionandaggregationofbranched(1→3)-β-D-glucansfromSaccharomycescerevisae.
Qin,F.,Aachmann,F.L.&Christensen,B.E.(2012).CarbohydratePolymers,90(2),1092-1099.
LinktoArticle
ReadAbstract
Water-soluble(1→3)-β-D-glucanswith1,6-linkedbranches(SBG),originallyisolatedfromthecellwallsofSaccharomycescerevisiaeandpartiallydepolymerisedforoptimalperformanceinwoundhealingapplications,werestudiedbysizeexclusionchromatography(SEC)withmulti-anglelaserlightscattering(MALLS)detectorandaviscositydetectoratbothhighandambientcolumntemperatures.Thestronglyaggregatingmaterialscouldbedispersedassinglechainsinwaterfollowingpartialcarboxymethylation(degreeofsubstitution(DS)0.51orhigher).LowerDS(0.23)alsodispersedassinglechainsprovidedacolumntemperatureof80°Cwasapplied.Reductionofreducingendspriortocarboxymethylationwasrequiredtoavoidalkalinepeelingandhencetoobtaincorrectmolecularweightdistributionsofthenativematerial.DSwasdeterminedusing13CNMRandpotentiometrictitration(range0.23–0.91).FurtheranalysisofCM-SBGinthesinglechainstatesuggestedarandomlycoiledbehaviourwithmarginalinfluenceofthebranchesintermsofmacroMolecularDimensions,whichwereclosetothoseofCM-curdlan.Theresultoftheinvestigationisasimpleandreliableprotocolforpreparingundegradedandun-aggregatedSBGderivatives,whicharewellsuitedasastandardanalysisofthemolecularweightdistributionofSBG-likemolecules.
Axyloglucan-specificfamily12glycosylhydrolasefromAspergillusniger:recombinantexpression,purificationandcharacterization.
Master,E.R.,Zheng,Y.,Storms,R.,Tsang,A.&Powlowski,J.(2008).Biochem.J,411,161-170.
LinktoArticle
ReadAbstract
AnewGH12(glycosylhydrolase12)familyXEG[xyloglucan-specificendo-β-1,4-glucanase(EC3.2.1.151)]fromAspergillusniger,AnXEG12A,wasoverexpressed,purifiedandcharacterized.WhereassevenxyloglucanasesfromGH74andtwoxyloglucanasesfromGH5havebeencharacterizedpreviously,thisisonlythethirdcharacterizedexampleofaGH12familyxyloglucanase.GH12enzymesarestructurallyandmechaNISTicallydistinctfromGH74enzymes.Althoughover100GH12sequencesarenowavailable,littleisknownaboutthestructuralandbiochemicalbasesofxyloglucanbindingandhydrolysisbyGH12enzymes.ComparisonoftheAnXEG12AcDNAsequencewiththegenomesequenceofA.nigershowedthepresenceoftwointrons,oneinthecodingregionandthesecondoneinthe333-nt-long3´-untranslatedregionofthetranscript.TheenzymewasexpressedrecombinantlyinA.nigerandwasreadilypurifiedfromtheculturesupernatant.Theisolatedenzymeappearedtohavebeenprocessedbyakexin-typeprotease,whichremovedashortprosequence.Thesubstratespecificitywasrestrictedtoxyloglucan,withcleavageatunbranchedglucoseinthebackbone.Theapparentkineticparametersweresimilartothosereportedforotherxyloglucan-degradingendoglucanases.ThepHoptimum(5.0)andtemperatureresultinginhighestenzymeactivity(50–60°C)werehigherthanthosereportedforaGH12familyxyloglucanasefromAspergillusaculeatus,butsimilartothoseofcellulose-specificendoglucanasesfromtheGH12family.Phylogenetic,sequenceandstructuralcomparisonsofGH12familyendoglucanaseshelpedtodelineatefeaturesthatappeartobecorrelatedtoxyloglucanspecificity.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们