Megazyme/半乳聚糖(羽扇豆)/P-GALLU/3克
商品编号:
P-GALLU
品牌:
Megazyme INC
市场价:
¥3864.00
美元价:
2318.40
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityGalactan(Lupin)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
ArABInofuranosidasetreatedlupinpecticgalactan.
Neutralsugarsratio:Gal:Ara:Rha:Xyl:othersugars=82:5.8:5.1:1.4:5.7,Galacturonicacid14.6%.
Pyrolysisgas-chromatographymass-spectrometry(Py-GC/MS)toidentifycompressionwoodinPinusrADIatasaplings.
Brennan,M.,McLean,J.P.,Klingberg,A.,Altaner,C.&Harris,P.J.(2014).Holzforschung,68(5),505-517.
LinktoArticle
ReadAbstract
Thepotentialofpyrolysisfollowedbygas-chromatographyandmass-spectrometry(Py-GC/MS)wasinvestigatedforidentifyingcompressionwood(CW)insaplingsofradiatapine(Pinusradiata)byexaminingsamplesofCWandoppositewood(OW).Phenoliccompoundsandanhydrosugarswereidentifiedamongthepyrolysisproductsthatprovidedinformationaboutthecell-wallpolymers.Samplepreparation,suchascoarse-milling,fine-milling,andfine-millingfollowedbycalcium-chloridetreatmentwasalsoinvestigated.Fine-millingtypicallydecreasedthetotalyieldofphenoliccompoundscomparedwithcoarse-milling.Fine-millingfollowedbycalcium-chloridewashingsignificantlyincreasedtheproportionsofpyrolysisproductsfrompolysaccharides,specificallyfrom(1→4)-β-D-galactansthatwereofinterestindistinguishingCWfromOW.SixpyrolysisproductswereidentifiedthatwereuniquetotheCWsamplesexamined,includingderivativesof(1→4)-β-D-galactansandH-unitsoflignin.Otherpyrolysisproductswereidentifiedthathadsignificantlydifferentproportionsbetweenthetwowoodtypes,andsometimesamongsamplesofthesamewoodtype.
Bioinformatic,genetic,andbiochemicalevidencethatsomeglycosidehydrolasefamily42β-galactosidasesarearabinogalactantypeIoligomerhydrolases.
Shipkowski,S.&Brenchley,J.E.(2006).AppliedandEnvironmentalMicroBIOLOGy,72(12),7730-7738.
LinktoArticle
ReadAbstract
Glycosidehydrolasesareorganizedintoglycosidehydrolasefamilies(GHFs)andwithinthislargergroup,theβ-galactosidasesaremembersoffourfamilies:1,2,35,and42.MostgenesencodingGHF42enzymesarefromprokaryotesunlikelytoencounterlactose,suggestingadifferentsubstratefortheseenzymes.Insearchofthissubstrate,weanalyzedgenesneighboringGHF42genesindatabasesanddetectedanarrangementimplyingthattheseenzymesmighthydrolyzeoligosaccharidesreleasedbyGHF53enzymesfromarabinogalactantypeI,apecticplantpolysaccharide.BecauseBacillussubtilishasadjacentGHF42andGHF53genes,weusedittotestthehypothesisthataGHF42enzyme(LacA)couldactontheoligosaccharidesreleasedbyaGHF53enzyme(GalA)fromgalactan.Weclonedthesegenes,plusasecondGHF42genefromB.subtilis,yesZ,intoEscherichiacolianddemonstratedthatcellsexpressingLacAwithGalAgainedtheabilitytousegalactanasacarbonsource.WeconstructedB.subtilismutantsandshowedthattheincreasedβ-galactosidaseactivitygeneratedinresponsetotheadditionofgalactanwaseliminatedbyinactivatinglacAorgalAbutunaffectedbytheinactivationofyesZ.Asfurtherdemonstration,weoverexpressedtheLacAandGalAproteinsinE.colianddemonstratedthattheseenzymesdegradegalactaninvitroasassayedbythin-layerchromatography.OurworkprovidesthefirstinvivoevidenceforafunctionofsomeGHF42β-galactosidases.Similarfunctionsforotherβ-galactosidasesinbothGHFs2and42aresuggestedbygenomicdata.
Arevisedarchitectureofprimarycellwallsbasedonbiomechanicalchangesinducedbysubstrate-specificendoglucanases.
Park,Y.B.&Cosgrove,D.J.(2012).PlantPhysiology,158(4),1933-1943.
LinktoArticle
ReadAbstract
Xyloglucaniswidelybelievedtofunctionasatetherbetweencellulosemicrofibrilsintheprimarycellwall,limitingcellenlargementbyrestrictingtheabilityofmicrofibrilstoseparatelaterally.Totestthebiomechanicalpredictionsofthis“tetherednetwork”model,weassessedtheabilityofcucumber(Cucumissativus)hypocotylwallstoundergocreep(long-term,irreversIBLeextension)inresponsetothreefamily-12endo-β-1,4-glucanasesthatcanspecificallyhydrolyzexyloglucan,cellulose,orboth.Xyloglucan-specificendoglucanase(XEGfromAspergillusaculeatus)failedtoinducecellwallcreep,whereasanendoglucanasethathydrolyzesbothxyloglucanandcellulose(Cel12AfromHypocreajecorina)inducedahighcreeprate.Acellulose-specificendoglucanase(CEGfromAspergillusniger)didnotcausecellwallcreep,eitherbyitselforincombinationwithXEG.Testswithadditionalenzymes,includingafamily-5endoglucanase,confirmedtheconclusionthattocausecreep,endoglucanasesmustcutbothxyloglucanandcellulose.Similarresultswereobtainedwithmeasurementsofelasticandplasticcompliance.BothXEGandCel12Ahydrolyzedxyloglucaninintactwalls,butCel12AcouldhydrolyzeaminorxyloglucancompartmentrecalcitranttoXEGdigestion.XyloglucaninvolvementintheseenzymeresponseswasconfirmedbyexperimentswithArabidopsis(Arabidopsisthaliana)hypocotyls,whereCel12Ainducedcreepinwild-typebutnotinxyloglucan-deficient(xxt1/xxt2)walls.Ourresultsareincompatiblewiththecommondepictionofxyloglucanasaload-bearingtetherspanningthe20-to40-nmspacingbetweencellulosemicrofibrils,buttheydoimplicateaminorxyloglucancomponentinwallmechanics.Thestructurallyimportantxyloglucanmaybelocatedinlimitedregionsoftightcontactbetweenmicrofibrils.
PurificationandcharacterizationofAspergillusβ-D-galactanasesactingonβ-1,4-andβ-1,3/6-linkedarabinogalactans.
Luonteri,E.,Laine,C.,Uusitalo,S.,Teleman,A.,Siika-aho,M.&Tenkanen,M.(2003).CarbohydratePolymers,53(2),155-168.
LinktoArticle
ReadAbstract
Arabinogalactanandarabinanfractionswereisolatedfromkraftpulpingblackliquor.BothtypeIandtypeIIarabinogalactansconsistingof1,4-and1,3-linkedβ-D-galactosebackbones,respectively,werefound.Samplescontainedmorearabino-1,3/6-galactanthanarabino-1,4-galactan.Arabinanwasmainly1,5-linkedslightlybranchedpolysaccharide.Twoenzymesactingongalactans,anendo-β-1,4-D-galactanaseandaβ-1,6-D-galactanase,wereisolatedfromcommercialpectinasepreparationsproducedbyAspergillusaculeatusandA.niger,respectively.Thepurifiedenzymesshowedmolecularmassesof38and58kDa,respectively.BasedonitsN-terminalaminoacidsequencetheendo-β-1,4-D-galactanasewasthesameasthepreviouslystudiedGAL1fromA.aculeatus.Itactedonβ-1,4-linkedgalactan,producingarangeofgalacto-oligosaccharides.Itwasalsoabletoliberategalactosefromalignin–carbohydratecomplexisolatedfromsoftwoodkraftpulp.Noactivitywasdetectedtowardsβ-1,3-likedgalactan.Theβ-1,6-D-galactanasewasactiveonarabino-1,3/6-galactan,liberatinggalactoseand1,6-β-D-galactobiose.Itwasfoundtobeactiveonlyonβ-1,6-linkagesandnodetectablehydrolysisofβ-1,3-galactoselinkagesoccurred.Italsoshowednoactivityon1,4-β-D-galactan.However,β-1,6-D-galactanasewasabletoliberatearabinosefromarabinan.Althoughchemicalpulpscontainonlyaminutequantityofgalactans,bothgalactanaseshaverecentlybeenshowntoenhancethebleachabilityofsprucekraftpulp.
Molecularcloningofendo-β-D-1,4-glucanasegenes,rce1,rce2,andrce3,fromRhizopusoryzae.
Moriya,T.,Murashima,K.,Nakane,A.,Yanai,K.,Sumida,N.,Koga,J.,Murakami,T.&Kono,T.(2003).JournalofBacteriology,185(5),1749-1756.
LinktoArticle
ReadAbstract
Threeendoglucanasegenes,designatedtherce1,rce2,andrce3genes,wereisolatedfromRhizopusoryzaeasthefirstcellulasegenesfromthesuBDivisionZygomycota.Alltheaminoacidsequencesdeducedfromtherce1,rce2,andrce3genesconsistedofthreedistinctdomains:cellulosebindingdomains,linkerdomains,andcatalyticdomainsbelongingtoglycosylhydrolasefamily45.Therce3genehadtwotandemrepeatedsequencesofcellulosebindingdomains,whilerce1andrce2hadonlyone.rce1,rce2,andrce3hadvariouslengthsoflinkersequences.
Localizationofpecticgalactanintomatocellwallsusingamonoclonalantibodyspecificto(1→4)-β-D-galactan.
Jones,L.,Seymour,G.B.&Knox,J.P.(1997).PlantPhysiology,113(4),1405-1412.
LinktoArticle
ReadAbstract
Todevelopantibodyprobesfortheneutralsidechainsofpectins,antiseraweregeneratedtoapecticgalactanisolatedfromtomato(Lycopersiconesculentum)pericarpcellwallsandtoa(1→4)-β-galactotetraose-bovineserumalbuminneoglycoprotein.Theuseofthesetwoantiserainimmunochemicalassaysandimmunolocalizationstudiesindicatedthattheyhadverysimilarspecificities.Amonoclonalantibody(LM5)wasisolatedandcharacterizedsubsequenttoimmunizationwiththeneoglycoprotein.Hapteninhibitionstudiesrevealedthattheantibodyspecificallyrecognizedmorethanthreecontiguousunitsof(1→4)-β-galactosylresidues.Theantigalactanantibodywasusedtoimmunolocalizethegalactansidechainsofpectinintomatofruitpericarpandtomatopetiolecellwalls.AlthoughtheLM5epitopeoccursinmostcellwallsofthetomatofruit,itwasabsentfromboththeloculargelandtheepidermalandsubepidermalcells.FurThermore,incontrasttootheranti-pectinantibodies,LM5didnotlabelthecellwallthickeningsoftomatopetiolecollenchyma.
Expressioncloning,purificationandcharacterizationofaβ-1,4-glactanasefromAspergillusaculeatus.
Christgau,S.,Sandal,T.,Kofod,L.V.&Dalbøge,H.(1995).CurrentGenetics,27(2),135-141.
LinktoArticle
ReadAbstract
ExpressioncloninghasbeenusedtoisolateaCDNAencodingβ-1,4-galactanasefromthefilamentousfungusAspergillusaculeatus.AcDNAlibrarywaspreparedfrommycelia,insertedinayeastexpressionvectorandtransformedintoSaccharomycescerevisiae.Thirteenclonessecretinggalactanaseactivitywereidentifiedfromascreeningofapproximately2.5×104yeastcolonies.Allclonesexpressedtranscriptsofthesamegalactanasegene.ThecDNAwasre-clonedinanAspergillusexpressionvectorandtransformedintoAspergillusoryzae.Therecombinantenzymehadamolecularweightof44000Da,anisoelectricpointofpH2.85,apHoptimumofpH4.0–4.5,andatemperatureoptimumof45–65°C,whichissimilartovaluesobtainedforaβ-1,4-galactanasepurifiedfromA.aculeatus.Theenzymedegradedunsubstitutedgalactantogalactoseandgalactobiose.Thededucedprimarysequenceoftheenzymeshowednoapparenthomologytoanyknownenzyme,inaccordancewiththisbeingthefirstreportedβ-1,4-galactanasecDNA.However,thededucedaminoacidsequenceofaBacilluscirculansDNAsequencecontaininganopenreadingframe(ORF)withnoknownfunction,showed36%identityand60%similaritytothegalactanaseamino-acidsequence.
CharacterizationofanEndo-β-1,6-GalactanasefromStreptomycesavermitilisNBRC14893.
Ichinose,H.,Kotake,T.,Tsumuraya,Y.&Kaneko,S.(2008).AppliedandEnvironmentalMicrobiology,74(8),2379-2383.
LinktoArticle
ReadAbstract
Theputativeendo-β-1,6-galactanasegenefromStreptomycesavermitiliswasclonedandexpressedinEscherichiacoli,andtheenzymaticpropertiesoftherecombinantenzymewerecharacterized.Thegeneconsistedofa1,476-bpopenreadingframeandencodeda491-amino-acidprotein,comprisinganN-terminalsecretionsignalsequenceandglycosidehydrolasefamily5catalyticmodule.Therecombinantenzyme,Sa1,6Gal5A,catalyzedthehydrolysisofβ-1,6-linkedgalactosyllinkagesofoligosaccharidesandpolysaccharides.Theenzymeproducedgalactoseandarangeofβ-1,6-linkedgalacto-oligosaccharides,predominantlyβ-1,6-galactobiose,fromβ-1,6-galactanchains.TherewasasynergisticeffectbetweentheenzymeandSa1,3Gal43Aindegradingtomatoarabinogalactanproteins.TheseresultssuggestthatSa1,6Gal5Aisthefirstidentifiedendo-β-1,6-galactanasefromaprokaryote.
Family6carbohydrate‐bindingmodulesdisplaymultipleβ1,3‐linkedglucan‐specificbindinginterfaces.
Correia,M.A.S.,Pires,V.M.R.,Gilbert,H.J.,Bolam,D.N.,Fernandes,V.O.,Alves,V.D.,Prates,J.A.M.,Ferreira,L.M.A.&Fontes,C.M.G.(2009).FEMSMicrobiologyLetters,300(1),48-57.
LinktoArticle
ReadAbstract
Noncatalyticcarbohydrate-bindingmodules(CBMs),whicharefoundinavarietyofcarbohydrate-degradingenzymes,havebeengroupedintosequence-basedfamilies.CBMs,byrecruitingtheirappendedenzymesontothesurfaceofthetargetsubstrate,potentiatecatalysisparticularlyagainstinsolublesubstrates.Family6CBMs(CBM6s)displayunusualpropertiesinthattheypresenttwopotentialligand-bindingsitestermedcleftsAandB,respectively.CleftBislocatedontheconcavesurfaceoftheβ-sandwichfoldwhilecleftA,themorecommonbindingsite,isformedbytheloopsthatconnecttheinnerandtheouterβ-sheets.Here,wereportthebiochemicalpropertiesofCBM6-1fromCellvibriomixtusCmCel5A.ThedatarevealthatCBM6-1specificallyrecognizesβ1,3-glucansthroughresidueslocatedbothincleftAandincleftB.Incontrast,apreviousreportshowedthataCBM6derivedfromaBacillushaloduranslaminarinasebindstoβ1,3-glucansonlyincleftA.Thesestudiesrevealadifferentmechanismbywhichahighlyconservedproteinplatformcanrecognizeβ1,3-glucans.
Cellulosemicrofibrilanglesandcell-wallpolymersindifferentwoodtypesofPinusradiate.
Brennan,M.,McLean,J.P.,Altaner,C.M.,Ralph,J.&Harris,P.J.(2012).Cellulose,19(4),1385-1404.
LinktoArticle
ReadAbstract
FourcorewoodtypeswereexaminedfromsaplingtreesoftwoclonesofPinusradiatagrowninaglasshouse.Treesweregrowneitherstraighttoproducenormalcorewood,tiltedat45°fromtheverticaltoproduceoppositecorewoodandcompressioncorewood,orrockedtoproduceflexurecorewood.MeancellulosemicrofibrilangleoftracheidwallswasestimatedbyX-raydiffractionandlongitudinalswellingmeasuredbetweenanovendryandmoisturesaturatedstate.Ligninandacetylcontentsofthewoodsweremeasuredandthemonosaccharidecompositionsofthecell-wallpolysaccharidesdetermined.Finelymilledwoodwasanalysedusingsolution-state2DNMRspectroscopyofgelsfromfinelymilledwoodinDMSO-d6/pyridine-d5.Althoughtherewasnosignificantdifferenceincellulosemicrofibrilangleamongthecorewoodtypes,compressioncorewoodhadthehighestlongitudinalswelling.Alignincontent>32%andagalactosylresiduecontent>6%clearlydividedseverecompressioncorewoodfromtheothercorewoodtypes.Relationshipscouldbedrawnbetweenlignincontentandlongitudinalswelling,andbetweengalactosylresiduecontentandlongitudinalswelling.The2DNMRspectrashowedthatthepresenceofH-unitsinligninwasexclusivetocompressioncorewood,whichalsohadahigher(1→4)-β-D-galactancontent,definingauniquecompositionforthatcorewoodtype.
Anovelα-galactosidasefromFusariumoxysporumanditsapplicationindeterminingthestructureofthegumarabicsidechain.
Maruta,A.,Yamane,M.,Matsubara,M.,Suzuki,S.,Nakazawa,M.,Ueda,M.&Sakamoto,T.(2017).EnzymeandMicrobialTechnology,103,25-33.
LinktoArticle
ReadAbstract
WepreviouslyreportedthatFusariumoxysporum12Sproducestwobifunctionalproteins,FoAP1andFoAP2,withα-D-galactopyranosidase(GPase)andβ-L-arabinopyranosidase(APase)activities.TheaimofthispaperwastopurifyathirdGPase,FoGP1,fromculturesupernatantofF.oxysporum12S,tocharacterizeit,andtodetermineitsmodeofactiontowardsgumarabic.AcDNAencodingFoGP1wasclonedandtheproteinwasoverexpressedinEscherichiacoli.ModulesequenceanalysisrevealedthepresenceofaGH27domaininFoGP1.Therecombinantenzyme(rFoGP1)showedaGPase/APaseactivityratioof330,whichwasquitedifferentfromthatofFoAP1(1.7)andFoAP2(0.2).Amongthenaturalsubstratestested,rFoGP1showedthehighestactivitytowardsgumarabic.Incontrasttootherwell-characterizedGPases,rFoGP1releasedasmallamountofgalactosefromα-galactosyloligosaccharidessuchasraffinoseandexhibitednoactivitytowardgalactomannans,whicharehighlysubstitutedwithα-galactosylsidechains.ThisindicatedthatFoGP1isanunusualtypeofGPase.rFoGP1released30%ofthetotalgalactosefromgumarabic,suggestingtheexistenceofalargenumberofα-galactosylresiduesatthenon-reducingendsofgumarabicsidechains.Together,rFoGP1andα-L-arabinofuranosidasereleasedfourtimesmorearabinosethanα-L-arabinofuranosidaseactingalone.Thissuggestedthatalargenumberofα-L-arabinofuranosylresiduesiscappedbyα-galactosylresidues.1HNMRexperimentsrevealedthatrFoGP1hydrolyzedtheα-1,3-galactosidiclinkagewithinthesidechainstructureof[α-D-Galp-(1 → 3)-α-L-Araf-(1 → ]ingumarabic.Inconclusion,rFoGP1ishighlyactivetowardα-1,3-galactosyllinkagesbutnegligiblyornotactivetowardα-1,6-galactosyllinkages.ThenovelFoGP1mightbeusedtomodifythephysicalpropertiesofgumarabic,whichisanindustriallyimportantpolysaccharideusedasanemulsionstabilizerandcoatingagent.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们