Megazyme/半乳聚糖(马铃薯)/P-GALPOT/3克
商品编号:
P-GALPOT
品牌:
Megazyme INC
市场价:
¥3864.00
美元价:
2318.40
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
Galactan(Potato)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
ArABInofuranosidasetreatedpotatopecticgalactan.Gal:Ara:Rha:GalUA=88:2:3:7
Pectinengineering:modificationofpotatopectinbyinvivoexpressionofanendo-1,4-β-D-galactanase.
Sørensen,S.O.,Pauly,M.,Bush,M.,Skjøt,M.,McCann,M.C.,Borkhardt,B.&Ulvskov,P.(2000).ProceedingsoftheNationalAcademyofSciences,97(13),7639-7644.
LinktoArticle
ReadAbstract
Potatotuberpectinisrichingalactan(oligomerofβ-1,4-linkedgalactosylresidues).Wehaveexpressedafungalendo-galactanaseCDNAinpotatoundercontrolofthegranuleboundstarchsynthasepromotertoobtainexpressionoftheenzymeintubersduringgrowth.Thetransgenicplantsdisplayednoalteredphenotypecomparedwiththewildtype.Fungalendo-galactanaseactivitywasquantifiedinthetransgenictubers,anditsexpressionwasverifiedbyWesternblotanalysis.Theeffectoftheendo-galactanaseactivityonpotatotuberpectinwasstudiedbyFouriertransforminfraredmicrospectroscopy,immuno-goldlabeling,andsugaranalysis.Allanalysesrevealedalterationsinpectincomposition.MonosaccharidecompositionoftotalcellwallsandisolatedrhamnogalacturonanIfragmentsshowedareductioningalactosylcontentto30%inthetransformantscomparedwiththewildtype.Increasedsolubilityofpectinfromtransgeniccellwallsbyendo-polygalacturonase/pectinmethylesterasedigestionpointstootherchangesinwallarchitecture.
Expressionandcharacterizationofanendo-1,4-β-galactanasefromEmericellanidulansinPichiapastorisforenzymaticdesignofpotentiallyprebioticoligosaccharidesfrompotatogalactans.
Michalak,M.,Thomassen,L.V.,Roytio,H.,Ouwehand,A.C.,Meyer,A.S.&Mikkelsen,J.D.(2012).EnzymeandMicrobialTechnology,50(2),121-129.
LinktoArticle
ReadAbstract
Potatopulpisahigh-volumeside-streamfromindustrialpotatostarchmanufacturing.Enzymaticallysolubilizedβ-1,4-galactan-richpotatopulppolysaccharidesofmolecularweights>100kDa(SPPP)arehighlybifidogenicinhumanfecalsamplefermentationsinvitro.Theobjectiveofthepresentstudywastousepotatoβ-1,4-galactanandtheSPPPassubstratesforenzymaticproductionofpotentiallyprebioticcompoundsoflowerandnarrowermolecularweight.Anovelendo-1,4-β-galactanasefromEmericellanidulans(anamorphAspergillusnidulans),GHfamily53,wasproducedinarecombinantPichiapastorisstrain.TheenzymewaspurifiedbyCu2+affinitychromatographyanditsoptimalreactionconditionsweredeterminedtopH5and49°Cviaastatisticalexperimentaldesign.ThespecificactivityoftheE.nidulansenzymeexpressedinP.pastoriswassimilartothatofanendo-1,4-β-galactanasefromAspergillusnigerusedasbenchmark.TheE.nidulansenzymeexpressedinP.pastorisgeneratedaspectrumpoly-andoligo-saccharideswhichwerefractionatedbymembranefiltration.Thepotentialgrowthpromotingpropertiesofeachfractionwereevaluatedbygrowthofbeneficialgutmicrobesandpathogenicbacteria.Allthegalactan-andSPPP-derivedproductspromotedthegrowthofprobioticstrainsofBifidobacteriumlongumandLactobacillusacidophilusandgenerallydidnotsupportthepropagationofClostridiumperfringensinsingleculturefermentations.NotablythegrowthofB.longumwassignificantlyhigher(p<0.05) or="" at="" least="" as="" good="" on="" galactan-="" and="" sppp-derived="" products="" as="" fructooligosaccharides="" (fos).="" except="" in="" one="" case="" these="" products="" did="" not="" support="" the="" growth="" of="" the="" pathogen="">0.05)>Cl.perfringenstoanysignificantextent.
Organizationofpecticarabinanandgalactansidechainsinassociationwithcellulosemicrofibrilsinprimarycellwallsandrelatedmodelsenvisaged.
Zykwinska,A.,Thibault,J.F.&Ralet,M.C.(2007).JournalofExperimentalBotany,58(7),1795-1802.
LinktoArticle
ReadAbstract
Thestructureofarabinanandgalactandomainsinassociationwithcellulosemicrofibrilswasinvestigatedusingenzymaticandalkalidegradationprocedures.Sugarbeetandpotatocellwallresidues(called‘natural’composites),richinpecticneutralsugarsidechainsandcellulose,aswellas‘artificial’composites,createdbyinvitroadsorptionofarabinanandgalactansidechainsontoprimarycellwallcellulose,werestudied.Thesecompositesweresequentiallytreatedwithenzymesspecificforpecticsidechainsandhotalkali.Thedegradationapproachusedshowedthatmostofthearabinanandgalactansidechainsareinstronginteractionwithcelluloseandarenothydrolysedbypecticsidechain-degrADIngenzymes.Itseemsunlikelythatisolatedarabinanandgalactanchainsareabletotetheradjacentmicrofibrils.However,cellulosemicrofibrilsmaybetetheredbydifferentpecticsidechainsbelongingtothesamepecticmacromolecule.
Solubilizationofgalactosyltransferasethatsynthesizes1,4‐β-galactansidechainsinpecticrhamnogalacturonanI.
Geshi,N.,Pauly,M.&Ulvskov,P.(2002).PhysiologiaPlantarum,114(4),540-548.
LinktoArticle
ReadAbstract
β-1,4-Galactangalactosyltransferase(GT)activitywassolubilizedfrompotatomicrosomalmembranesinthepresenceof78mM3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulphonicacid.ThesolubilizedGTactivitytransferred14[C]galactosefromUDP-14[C]galactoseontotheacceptor-substratescomposedofrhamnogalacturonan(RG)withshortgalactanchains(RG-A,approximately1.2MDa,mol%Gal/Rha=0.7;RG-B,approximately21kDa,mol%Gal/Rha=1.2).However,shorterRGcontainingshortgalactanchains(approximately2kDaand1.2kDa),RGoligomerswithoutgalactosyl-residues,galactan,andgalactooligomersdidnotactasacceptor-substrates.OptimalpHfor14[C]incorporationontoRG-AandRG-Bwasaround5.6and7.5,respectively.The14[C]-labelledproductssynthesizeduponRG-AandRG-BcouldbedigestedwithaRGspecificlyaseintosmallerRGfragments.1,4-β-Endogalactanasecouldnotdigesttheformerproduct,whereasthelatterproductwasdigestedto14[C]galactobioseand14[C]galactose.ThisdemonstratesthatatleasttwoGTactivitiesweresolubilizedfrompotatomicrosomalmembranes.OnehadoptimalpHaround5.6totransfergalactosylresiduesontoRG-A,whereastheotherhadoptimalpHaround7.5totransfergalactosylresiduesontoRG-B.BothsynthesizedgalactanattachedtotheRGbackboneofRG-AandRG-B,andthegalactansynthesizedontotheRG-Bacceptorwas1,4-β-linked.
Invitrobiosynthesisof1,4-β-galactanattachedtorhamnogalacturonanI.
Geshi,N.,Jørgensen,B.,Scheller,H.V.&Ulvskov,P.(2000).Planta,210(4),622-629.
LinktoArticle
ReadAbstract
ThebiosynthesisofgalactanwasinvestigatedusingmicrosomalmembranesisolatedfromsUSPension-culturedcellsofpotato(SolanumtuberosumL.var.AZY).IncubationofthemicrosomalmembranesinthepresenceofUDP-[14C]galactoseresultedinaradioactiveproductinsolublein70%methanol.Theproductreleasedonly[14C]galactoseuponacidhydrolysis.TreatmentoftheproductwithAspergillusnigerendo-1,4-β-galactanasereleased65–70%oftheradioactivitytoa70%-methanol-solublefraction.Toaminorextent,[14C]galactosewasalsoincorporatedintoproteins,howeverthesegalactoproteinswerenotasubstrateforAspergillusnigerendo-1,4-β-galactanase.Thus,themajorityofthe14C-labelledproductwas1,4-β-galactan.Compoundsreleasedbytheendo-1,4-β-galactanasetreatmentweremainly[14C]galactoseand[14C]galactobiose,indicatingthatthesynthesized1,4-β-galactanwaslongerthanatrimer.Invitrosynthesisof1,4-β-galactanwasmostactivewith6-d-oldcells,whichareinthemiddleofthelineargrowthphase.TheoptimalsynthesisoccurredatpH6.0inthepresenceof7.5 mMMn2+.AspergillusaculeatusrhamnogalacturonaseAdigestedatleast50%ofthelabelledproducttosmallerfragmentsofapprox.14 kDa,suggestingthatthesynthesized[14C]galactanwasattachedtotheendogenousrhamnogalacturonanI.WhenrhamnogalacturonaseAdigestsofthelabelledproductweresubsequentlytreatedwithendo-1,4-β-galactanase,radioactivitywasnotonlyfoundas[14C]galactoseor[14C]galactobiosebutalsoaslargerfragments.Thelargerfragmentswerelikelythe[14C]galactoseor[14C]galactobiosestillattachedtotherhamnogalacturonanbackbonesincetreatmentwithβ-galactosidasetogetherwithendo-1,4-β-galactanasedigestedallradioactivitytothefractionelutingas[14C]galactose.Thedataindicatethatthemajorityofthe[14C]galactanwasattacheddirectlytotherhamnoseresiduesinrhamnogalacturonanI.Thus,isolatedmicrosomalmembranescontainenzymeactivitiestobothinitiateandelongate1,4-β-galactansidechainsintheendogenouspecticrhamnogalacturonanI.
Anovelmechanismofxylanbindingbyalectin-likemodulefromStreptomyceslividansxylanase10A.
Boraston,A.B,Tomme,P.,Amandoron,E.A.&Kilburn,D.G.(2000).Biochem.J,350,933-941.
LinktoArticle
ReadAbstract
TheC-terminalmoduleofxylanase10AfromStreptomyceslividansisafamily13carbohydrate-bindingmodule(CBM13).CBM13bindsmono-andoligo-saccharideswithassociationconstantsof1×102M-1–1×103M-1.Itappearstobespecificonlyforpyranosesugars.CBM13bindsinsolubleandsolublexylan,holocellulose,pachyman,lichenan,arabinogalactanandlaminarin.Theassociationconstantforbindingtosolublexylanis(6.2±0.6)×103/molofxylanpolymer.Site-directedmutationindicatestheinvolvementofthreefunctionalsitesonCBM13inbindingtosolublexylan.Thesitesaresimilarinsequence,andarepredictedtohavesimilarstructures,totheα,βandγsitesofricintoxinB-chain,whichisalsoinfamily13.TheaffinityofasinglebindingsiteonCBM13forsolublexylanisonly≈(0.5±0.1)×103/molofxylan.ThebindingofCBM13tosolublexylaninvolvesadditiveandco-operativeinteractionsbetweenthethreebindingsites.ThismechanismofbindinghasnotpreviouslybeenreportedforCBMsbindingpolysaccharides.CBM13isthefirstbacterialmodulefromfamily13tobedescribedindetail.
Characterizationofthebga1-encodedglycosidehydrolasefamily35β-galactosidaseofHypocreajecorinawithgalacto-β-D-galactanaseactivity.
Gamauf,C.,Marchetti,M.,Kallio,J.,Puranen,T.,Vehmaanperä,J.,Allmaier,G.,Kubicek,C.P.&Seiboth,B.(2007).FEBSJournal,274(7),1691-1700.
LinktoArticle
ReadAbstract
Theextracellularbga1-encodedβ-galactosidaseofHypocreajecorina(Trichodermareesei)wasoverexpressedunderthepyruvatkinase(pki1)promoterregionandpurifiedtoapparenthomogeneity.Themonomericenzymeisaglycoproteinwithamolecularmassof118.8±0.5kDa(MALDI-MS)andanisoelectricpointof6.6.Bga1isactivewithseveraldisaccharides,e.g.lactose,lactuloseandgalactobiose,aswellaswitharyl-andalkyl-β-D-galactosides.Basedonthecatalyticefficiencies,lactitolandlactobionicacidarethepoorestsubstratesando-nitrophenyl-β-D-galactosideandlactulosearethebest.ThepHoptimumforthehydrolysisofgalactosidesis5.0,andtheoptimumtemperaturewasfoundtobe60°C.Bga1isalsocapableofreleasingD-galactosefromβ-galactansandisthusactuallyagalacto-β-D-galactanase.β-GalactosidaseisinhibitedbyitsreactionproductD-galactoseandtheenzymealsoshowsasignificanttransferaseactivitywhichresultsintheformationofgalacto-oligosaccharides.
Pectinbiosynthesis:GALS1inArabidopsisthalianaisaβ-1,4-galactanβ-1,4-galactosyltransferase.
Liwanag,A.J.M.,Ebert,B.,Verhertbruggen,Y.,Rennie,E.A.,Rautengarten,C.,Oikawa,A.,Andersen,M.C.F.,Clausen,M.H.&Scheller,H.V.(2012).ThePlantCell,24(12),5024-5036.
LinktoArticle
ReadAbstract
β-1,4-Galactansareabundantpolysaccharidesinplantcellwalls,whicharegenerallyfoundassidechainsofrhamnogalacturonanI.RhamnogalacturonanIisamajorcomponentofpectinwithabackboneofalternatingrhamnoseandgalacturonicacidresiduesandsidechainsthatincludeα-1,5-arabinans,β-1,4-galactans,andarabinogalactans.Manyenzymesarerequiredtosynthesizepectin,butfewhavebeenidentified.Pectinismostabundantinprimarywallsofexpandingcells,butβ-1,4-galactanisrelativelyabundantinsecondarywalls,especiallyintensionwoodthatformsinresponsetomechanicalstress.WeinvestigatedenzymesinglycosyltransferasefamilyGT92,whichhasthreemembersinArabidopsisthaliana,whichwedesignatedGALACTANSYNTHASE1,(GALS1),GALS2andGALS3.Loss-of-functionmutantsinthecorrespondinggeneshadadecreasedβ-1,4-galactancontent,andoverexpressionofGALS1resultedinplantswith50%higherβ-1,4-galactancontent.Theplantsdidnothaveanobviousgrowthphenotype.Heterologouslyexpressedandaffinity-purifiedGALS1couldtransferGalresiduesfromUDP-Galontoβ-1,4-galactopentaose.GALS1specificallyformedβ-1,4-galactosyllinkagesandcouldaddsuccessiveβ-1,4-galactosylresiduestotheacceptor.TheseobservationsconfirmtheidentityoftheGT92enzymeasβ-1,4-galactansynthase.Theidentificationofthisenzymecouldprovideanimportanttoolforengineeringplantswithimprovedbioenergyproperties.
Glycationoflysozymewithgalactose,galactooligosaccharidesandpotatogalactanthroughtheMaillardreactionandoptimizationoftheproductionofprebioticglycoproteins.
Seo,S.,Karboune,S.,Yaylayan,V.&L’Hocine,L.(2012).ProcessBiochemistry,47(2),297-304.
LinktoArticle
ReadAbstract
Theproductionofglycatedlysozyme(LZM),withgalactose,galactooligosaccharides(GOSs)andpotatogalactanthroughtheMaillardreaction,wasinvestigated.Thepercentblockedlysine,estimatedfromthefurosinecontent,reachedamaximumvalueof11.2%forLZM:galactanconjugatesafter1dayincubationataawof0.65.Amaximumpercentblockedlysineof7.0and13.5%wereobtainedforLZM:galactose/GOSconjugatesatalowerawof0.45after3and7days,respectively.However,thelowpercentblockedlysineandthehighproteinaggregationindexofLZM:galactose/GOSconjugatesataw0.79and0.65revealedtheprevalenceofthedegradationoftheAmadoricompoundsandtheproteincross-linking.MassspectrometryofLZMconjugatesrevealedtheformationofdifferentglycoforms.GlycatedLZMscontaininguptosevengalactosemoietieswereformed;whileonlymono-anddiglycatedLZMswithGOSsweredetected.2–3molofgalactanwereconjugatedto1molofLZM.Responsesurfacemethodology,basedona5-leveland3-factorcentralcompositedesign,revealedthatmolarratioandtemperaturewerethemostsignificantvariablesfortheglycationofLZMwithGOSs.Theoptimalconditionsleadingtoahighpercentblockedlysine(16.11%)withalowproteinaggregationindex(0.11)wereidentified:temperatureof49.5°C,LZM:GOSmolarratioof1:9andawof0.65.Tothebestofourknowledge,thisisthefirststudyontheoptimizationofLZMglycationwithGOSs.
Subcellularlocalizationandtopologyofβ(1→4)galactosyltransferasethatelongatesβ(1→4)galactansidechainsinrhamnogalacturonanIinpotato.
Geshi,N.,Jørgensen,B.&Ulvskov,P.(2004).Planta,218(5),862-868.
LinktoArticle
ReadAbstract
ThesubcellularlocalizationandtopologyofrhamnogalacturonanI(RG-I)β(1→4)galactosyltransferase(s)(β[1→4]GalTs)frompotato(SolanumtuberosumL.)wereinvestigated.Usingtwo-stepdiscontinuoussucrosestepgradients,galactosyltransferase(GalT)activitythatsynthesized70%-methanol-insolubleproductsfromUDP-[14C]Galwasdetectedinboththe0.5Msucrosefractionandthe0.25/1.1Msucroseinterface.TheformerfractioncontainedmainlysolubleproteinsandthelatterwasenrichedinGolgivesiclesthatcontainedmostoftheUDPaseactivity,aGolgiMarker.Bygel-filtrationanalysis,productsof180–2,000Dawerefoundinthesolublefraction,whereasintheGolgi-enrichedfractiontheproductswerelargerthan80kDaandcouldbedigestedwithrhamnogalacturonanlyaseandβ(1,4)endogalactanasetoyieldsmallerrhamnogalacturonanoligomers,galactobioseandgalactose.Theendogalactanaserequiresβ(1→4)galactanswithatleastthreegalactosylresiduesforcleavage,indicatingthattheenzyme(s)presentinthe0.25/1.1MSucinterfacetransferredoneormoregalactosylresiduestopre-existingβ(1→4)galactansproducingRG-Isidechainsintotallongerthanatrimer.Thus,theβ(1→4)GalTactivitythatelongatesβ(1→4)-linkedgalactanonRG-IwaslocatedintheGolgiapparatus.Thisβ(1→4)GalTactivitywasnotreducedaftertreatmentoftheGolgivesicleswithproteinase,butapproximately75%oftheactivitywaslostaftertreatmentwithproteinaseinthepresenceofTritonX-100.Inaddition,theβ(1→4)GalTactivitywasrecoveredinthedetergentphaseaftertreatmentofGolgivesicleswithTritonX-114.Takentogether,theseobservationssupportedtheviewthattheRG-Iβ(1→4)GalTthatelongatesβ(1→4)galactanwasmainlylocatedintheGolgiapparatusandintegratedintothemembranewithitscatalyticsitefacingthelumen.
Microwave-assistedalkalineextractionofgalactan-richrhamnogalacturonanIfrompotatocellwallby-product.
Khodaei,N.,Karboune,S.&Orsat,V.(2016).Foodchemistry,190,495-505.
LinktoArticle
ReadAbstract
Galactan-richrhamnogalacturonanI(RGI),exhibitingpromisinghealthbenefits,isthemostabundantpolysaccharideinpotatopulpby-product.Inthepresentstudy,themicrowave-assistedalkalineextractionofgalactan-richRGIwasinvestigated.Solid/liquidratiowasidentifiedasthemostsignificantparameteraffectinglinearlyyieldandgalactose/rhamnosecontents.Microwavepowerandsolid/liquidratioexhibitedasignificantadverseinteractiveeffectontheyield.GalactosecontentofextractedpolysaccharidescanbemodulatedbycompromisingbetweenKOHconcentrationandextractiontime,whichexhibitedadverseinteraction.Optimumconditionswereidentifiedusingtheestablishedpredictedmodelsandconsistedoftreatmentofpotatocellwallatsolid/liquidratioof2.9%(w/v)with1.5 MKOHundermicrowavepowerof36.0 Wfor2.0 min.Yieldofintactgalactan-richRGIof21.6%andproductivityof192.0 g/L hwereachieved.ThefunctionalpropertiesofRGI-richpolysaccharideswerecomparableorsuperiortopotatogalactanandorangeshomogalacturonan.
Prebioticpotentialofneutraloligo-andpolysaccharidesfromseedmucilageofHyptissuaveolens.
Mueller,M.,Čavarkapa,A.,Unger,F.M.,Viernstein,H.&Praznik,W.(2017).Foodchemistry,221,508-514.
LinktoArticle
ReadAbstract
Prebioticsareselectivelyfermentedbythegastrointestinalmicroflora,resultinginbenefitstohumanhealth.TheseedmucilageofHyptissuaveolenscontainsneutralandacidicpolysaccharidesinaratioof1:1.Theneutralpolysaccharidesconsistofgalactose,glucoseandmannosewhereastheacidicpolysaccharidescontainfucose,xyloseand4-O-methylglucuronicacid-residues.Thegrowthofprobioticsinthepresenceoftotal,acidicorneutralpolysaccharidesandoligosaccharideswastestedusingturbiditymeasurements.Themajority(11outof14)ofthetestedprobioticstrainssignificantlygrewintheneutralfraction.Growthoccurredwithsometimedelay,butmaybelongerlastingthanwithotherlowermolecularprebiotics.TheextentofgrowthincreasedwithneutralpolysaccharidesfromH.suaveolenscorrespondingtotheexternallyavailablegalactoseunits(20%).Inconclusion,neutralpoly-andoligosaccharidesfromH.suaveolenshaveaprebioticpotentialcharacterizedbyadelayedbutlonglastingeffect.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们