巨酶/半乳甘露聚糖(角豆;低粘度)/P-GALML/4克
商品编号:
P-GALML
品牌:
Megazyme INC
市场价:
¥3552.00
美元价:
2131.20
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityGalactomannan(Carob;LowViscosity)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Purity>94%.Galactose:Mannose=22:78.Treatedwithsodiumbobohydridetoreducebackgroundcolour.Fortheassayofβ-mannanasebyreducingsugarprocedures.Viscosity~2CST.
α-D-galactosidaseactivityandgalactomannanandgalactosylsucroseoligosaccharidedepletioningerminatinglegumeseeds.
McCleary,B.V.&Matheson,N.K.(1974).Phytochemistry,13(9),1747-1757.
LinktoArticle
ReadAbstract
Germinatingseedsoflucerne,guar,carobandsoybeaninitiallydepletedraffinoseseriesoligosaccharidesandthengalactomannan.Thisdepletionwasaccompaniedbyarapidincreaseandthenadecreaseinα-galactosidaselevels.Lucerneandguarcontainedtwoα-galactosidaseactivities,carobthreeandsoybeanfour.Oneoftheseineachplant,fromitslocationintheendosperm,timeofappearanceandkineticbehaviour,appearedtobeprimarilyinvolvedingalactomannanhydrolysis.ThisenzymeinlucernehadMWof23000andcouldnotbeseparatedfromβ-mannanaseby(NH4)2SO4fractionation,DEAE,CMorSE-cellulosechromatographyorgelfiltration,butonlybypolyacrylamidegelelectrophoresis.Inguar,carobandsoybean,itcouldbeseparatedbyion-exchangechromatographyandgelfiltration.Inlucerne,carobandguarmostofthetotalincreaseinactivitywasduetothisenzyme.Theotherα-galactosidaseshadMWsofabout35000andcouldbeseparatedfromβ-mannanasebydissection,ionexchangecellulosechromatographyandgelfiltration.Theywerelocatedinthecotyledon-embryoandappearedtobeprimarilyinvolvedingalactosylsucroseoligosaccharidehydrolysis.
Galactomannanstructureandβ-mannanaseandβ-mannosidaseactivityingerminatinglegumeseeds.
McCleary,B.V.&Matheson,N.K.(1975).Phytochemistry,14,1187-1194.
LinktoArticle
ReadAbstract
Structuralchangesingalactomannanongerminationoflucerne,carob,honeylocust,guarandsoybeanseeds,asmeasuredbyviscosity,elutionvolumesongelfiltrationandultra-centrifugationwereslightconsistentwitharapidandcompletehydrolysisofamoleculeoncehydrolysisofthemannanchainstarts.β-Mannanaseactivityincreasedandthendecreased,parallelinggalactomannandepletion.Multipleformsofβ-mannanasewereisolatedandthesewerelocatedintheendosperm.β-MannanasehadlimitedABIlitytohydrolysegalactomannanswithhighgalactosecontents.Seedscontainingthesegalactomannanshadveryactiveα-galactosidases.β-Mannosidaseswerepresentinbothendospermandcotyledon-embryoandcouldbeseparatedchromatographically.Thelevelofactivitywasjustsufficienttoaccountformannoseproductionfrommanno-oligosaccharides.
Galactomannansandagalactoglucomannaninlegumeseedendosperms:Structuralrequirementsforβ-mannanasehydrolysis.
McCleary,B.V.,Matheson,N.K.&Small,D.B.(1976).Phytochemistry,15(7),1111-1117.
LinktoArticle
ReadAbstract
Aseriesofgalactomannanswithvaryingdegreesofgalactosesubstitutionhavebeenextractedfromtheendospermsoflegumeseedswithwaterandalkaliandtheamountofsubstitutionrequiredforwatersolubilityhasbeendetermined.Somewereheterogeneouswithrespecttothedegreeofgalactosesubstitution.Thestructuralrequirementsforhydrolysisbyplantβ-mannanasehavebeenstudiedusingtherelativeratesandextentsofhydrolysisofthesegalactomannans.Amoredetailedexaminationoftheproductsofhydrolysisofcarobgalactomannanhasbeenmade.Atleasttwocontiguousanhydromannoseunitsappeartobeneededforscission.Thisissimilartotherequirementforhydrolysisbymicrobialenzymes.Judastree(Cercissiliquastrum)endospermcontainedapolysaccharidewithauniquecompositionforalegumeseedreserve.Gelchromatographyandelectrophoresisoncelluloseacetateindicatedhomogeneity.Hydrolysiswithamixtureofβ-mannanaseandα-galactosidasegaveaglucose-mannosedisaccharideandacetolysisgaveagalactose-mannose.Theseresults,aswellasthepatternofhydrolysisbyβ-mannanasewereconsistentwithagalactoglucomannanstructure.
Modesofactionofβ-mannanaseenzymesofdiverseoriginonlegumeseedgalactomannans.
McCleary,B.V.(1979).Phytochemistry,18(5),757-763.
LinktoArticle
ReadAbstract
β-MannanaseactivitiesinthecommercialenzymepreparationsDriselaseandCellulase,inculturesolutionsofBacillussubtilis(TX1),incommercialsnailgut(Helixpomatia)preparationsandingerminatedseedsoflucerne,Leucaenaleucocephalaandhoneylocust,havebeenpurifiedbysubstrateaffinitychromatographyonglucomannan-AH-Sepharose.Onisoelectricfocusing,multipleproteinbandswerefound,allofwhichhadβ-mannanaseactivity.EachpreparationappearedasasinglemajorbandonSDS-polyacrylamidegelelectrophoresis.Theenzymesvariedintheirfinalspecificactivities,Kmvalues,optimalpH,isoelectricpointsandpHandtemperaturestabilitiesbuthadsimilarMWs.Theenzymeshavedifferentabilitiestohydrolysegalactomannanswhicharehighlysubstitutedwithgalactose.ThepreparationsDriselaseandCellulasecontainβ-mannanaseswhichcanattackhighlysubstitutedgalactomannansatpointsofsingleunsubstitutedD-mannosylresiduesiftheD-galactoseresiduesinthevicinityofthebondtobehydrolysedareallononlyonesideofthemainchain.
AnenzymictechniqueforthequantitationofgalactomannaninguarSeeds.
McCleary,B.V.(1981).Lebensmittel-Wissenschaft&Technologie,14,56-59.
LinktoArticle
ReadAbstract
Anenzymictechniquehasbeendevelopedfortherapidandaccuratequantitationofthegalactomannancontentofguarseedsandmillingfractions.Thetechniqueinvolvesthemeasurementofthegalactosecomponentofgalactomannansusinggalactosedehydrogenase.Thegalactomannansareconvertedtogalactoseandmanno-oligosaccharidesusingpartiallypurifiedenzymesfromacommercialpreparationandfromgerminatedguarseeds.Simpleprocedureshavebeendevisedforthepreparationoftheseenzymes.Applicationofthetechniquetoanumberofguarvarietiesgavevaluesforthegalactomannancontentrangingfrom22.7to30.8%ofseedweight.
Purificationandpropertiesofaβ-D-mannosidemannohydrolasefromguar.
McCleary,B.V.(1982),CarbohydrateResearch,101(1),75-92.
LinktoArticle
ReadAbstract
Aβ-D-mannosidemannohydrolaseenzymehasbeenpurifiedtohomogeneityfromgerminatedguar-seeds.Difficultiesassociatedwiththeextractionandpurificationappearedtobeduetoaninteractionoftheenzymewithotherproteinmaterial.Thepurifiedenzymehydrolysedvariousnaturalandsyntheticsubstrates,includingβ-D-manno-oligosaccharidesandreducedβ-D-manno-oligosaccharidesofdegreeofpolymerisation2to6,aswellasp-nitrophenyl,naphthyl,andmethylumbelliferylβ-D-mannopyranosides.Thepreferred,naturalsubstratewasβ-D-mannopentaose,whichwashydrolysedattwicetherateofβ-D-mannotetraoseandfivetimestherateofβ-D-mannotriose.Thisresult,togetherwiththeobservationthatα-D-mannoseisreleasedonhydrolysis,indicatesthattheenzymeisanexo-β-D-mannanase.
Preparative–scaleisolationandcharacterisationof61-α-D-galactosyl-(1→4)-β-D-mannobioseand62-α-D-galactosyl-(1→4)-β-D-mannobiose.
McCleary,B.V.,Taravel,F.R.&Cheetham,N.W.H.(1982).CarbohydrateResearch,104(2),285-297.
LinktoArticle
ReadAbstract
N.m.r.,enzymic,andchemicaltechniqueshavebeenusedtocharacterisetheD-galactose-containingtri-andtetra-saccharidesproducedonhydrolysisofcarobandL.leucocephalaD-galacto-D-mannansbyDriselaseβ-D-mannanase.Theseoligosaccharideswereshowntobeexclusively61-α-D-galactosyl-β-D-mannobioseand61-α-D-galactosyl-β-D-mannotriose.FurThermore,theseweretheonlyD-galactose-containingtri-andtetra-saccharidesproducedonhydrolysisofcarobD-galacto-D-mannanbyβ-D-mannanasesfromothersources,includingBacillussubtilis,Aspergillusniger,Helixpomatiagutsolution,andgerminatedlegumes.Acidhydrolysisoflucernegalactomannanyielded61-α-D-galactosyl-β-D-mannobioseand62-α-D-galactosyl-β-D-mannobiose.
β-D-mannosidasefromHelixpomatia.
McCleary,B.V.(1983).CarbohydrateResearch,111(2),297-310.
LinktoArticle
ReadAbstract
β-D-Mannosidase(β-D-mannosidemannohydrolaseEC3.2.1.25)waspurified160-foldfromcrudegut-solutionofHelixpomatiabythreechromatographicstepsandthengaveasingleproteinband(mol.wt.94,000)onSDS-gelelectrophoresis,andthreeproteinbands(ofalmostidenticalisoelectricpoints)onthin-layeriso-electricfocusing.Eachoftheseproteinbandshadenzymeactivity.Thespecificactivityofthepurifiedenzymeonp-nitrophenylβ-D-mannopyranosidewas1694nkat/mgat40°anditwasdevoidofα-D-mannosidase,β-D-galactosidase,2-acet-amido-2-deoxy-D-glucosidase,(1→4)-β-D-mannanase,and(1→4)-β-D-glucanaseactivities,almostdevoidofα-D-galactosidaseactivity,andcontaminatedwith<0.02% of="" β-d-glucosidase="" activity.="" the="" purified="" enzyme="" had="" the="" same="">0.02%>Kmforborohydride-reducedβ-D-manno-oligosaccharidesofd.p.3-5(12.5mM).Theinitialrateofhydrolysisof(1→4)-linkedβ-D-manno-oligosaccharidesofd.p.2-5andofreducedβ-D-manno-oligosaccharidesofd.p.3-5wasthesame,ando-nitrophenyl,methylumbelliferyl,andnaphthylβ-D-mannopyranosideswerereADIlyhydrolysed.β-D-Mannobiosewashydrolysedatarate~25timesthatof61-α-D-galactosyl-β-D-mannobioseand63-α-D-galactosyl-β-D-mannotetraose,andat~90timestherateforβ-D-mannobi-itol.
Enzymicinteractionsinthehydrolysisofgalactomannaningerminatingguar:Theroleofexo-β-mannanase.
McCleary,B.V.(1983).Phytochemistry,22(3),649-658.
LinktoArticle
ReadAbstract
Hydrolysisofgalactomannaninendospermsofgerminatingguarisduetothecombinedactionofthreeenzymes,α-galactosidase,β-mannanaseandexo-β-mannanase.α-Galactosidaseandexo-β-mannanaseactivitiesoccurbothinendospermandcotyledontissuebutβ-mannanaseoccursonlyinendosperms.Onseedgermination,β-mannanaseandendospermicα-galactosidasearesynthesizedandactivitychangesparallelgalactomannandegradation.Galactomannandegradationandsynthesisofthesetwoenzymesareinhibitedbycycloheximide.Incontrast,endospermicexo-β-mannanaseisnotsynthesizedonseedgermination,butratherisalreadypresentthroughoutendospermtissue.Ithasnoactiononnativegalactomannan.α-Galactosidase,β-mannanaseandexo-β-mannanasehavebeenpurifiedtohomogeneityandtheirseparateandcombinedactioninthehydrolysisofgalactomannanandeffectontherateofuptakeofcarbohydratebycotyledons,studied.Resultsobtainedindicatedthatthesethreeactivitiesaresufficienttoaccountforgalactomannandegradationinvivoand,further,thatallthreearerequired.Cotyledonscontainanactiveexo-β-mannanaseandsugar-uptakeexperimentshaveshownthatcotyledonscanabsorbmannobioseintact,indicatingthatthisenzymeisinvolvedinthecompletedegradationofgalactomannanonseedgermination.
Characterisationoftheoligosaccharidesproducedonhydrolysisofgalactomannanwithβ-D-mannase.
McCleary,B.V.,Nurthen,E.,Taravel,F.R.&Joseleau,J.P.(1983).CarbohydrateResearch,118,91-109.
LinktoArticle
ReadAbstract
Treatmentofhot-water-solublecarobgalactomannanwithβ-D-mannanasesfromA.nigerorlucerneseedaffordsanarrayofD-galactose-containingβ-D-mannosaccharidesaswellasβ-D-manno-biose,-triose,and-tetraose(lucerne-seedenzymeonly).TheD-galactose-containingβ-D-mannosaccharidesofd.p.3–9producedbyA.nigerβ-D-mannanasehavebeencharacterised,usingenzymic,n.m.r.,andchemicaltechniques,as61-α-D-galactosyl-β-D-mannobiose,61-α-D-galactosyl-β-D-mannotriose,63,64-di-α-D-galactosyl-β-D-mannopentaose(theonlyheptasaccharide),and63,64-di-α-D-galactosyl-β-D-mannohexaose,64,65-di-α-D-galactosyl-β-D-mannohexaose,and61,63,64-tri-α-D-galactosyl-β-D-mannopentaose(theonlyoctasaccharides).Fournonasaccharideshavealsobeencharacterised.Penta-andhexa-saccharideswereabsent.Lucerne-seedβ-D-mannanaseproducedthesamebranchedtri-,tetra-andhepta-saccharides,andalsopenta-andhexa-saccharidesthatwerecharacterisedas61-α-D-galactosyl-β-D-mannotetraose,63-α-D-galactosyl-β-D-mannotetraose,61,63-di-α-D-galactosyl-β-D-mannotetraose,63-α-D-galactosyl-β-D-mannopentaose,and64-α-D-galactosyl-β-D-mannopentaose.NoneoftheoligosaccharidescontainedaD-galactosestubontheterminalD-mannosylgroupnorweretheysubstitutedonthesecondD-mannosylresiduefromthereducingterminal.
Actionpatternsandsubstrate-bindingrequirementsofβ-D-mannanasewithmannosaccharidesandmannan-typepolysaccharides.
McCleary,B.V.&Matheson,N.K.(1983).CarbohydrateResearch,119,191-219.
LinktoArticle
ReadAbstract
Purified(1→4)-β-D-mannanasefromAspergillusnigerandlucerneseedshasbeenincubatedwithmannosaccharidesandend-reduced(1→4)-β-D-mannosaccharidesand,fromtheproductsofhydrolysis,acyclicreaction-sequencehasbeenproposed.Fromtheheterosaccharidesreleasedbyhydrolysisofthehot-water-solublefractionofcarobgalactomannanbyA.nigerβ-D-mannanase,apatternofbindingbetweentheβ-D-mannanchainandtheenzymehasbeendeduced.Theproductsofhydrolysiswiththeβ-D-mannanasesfromIrpexlacteus,Helixpomatia,Bacillussubtilis,andlucerneandguarseedshavealsobeendetermined,andthedifferencesfromtheactionofA.nigerβ-D-mannanaserelatedtominordifferencesinsubstratebinding.Theproductsofhydrolysisofglucomannanareconsistentwiththoseexpectedfromthebindingpatternproposedfromthehydrolysisofgalactomannan.
Thefinestructuresofcarobandguargalactomannans.
McCleary,B.V.,Clark,A.H.,Dea,I.C.M.&Rees,D.A.(1985).CarbohydrateResearch,139,237-260.
LinktoArticle
ReadAbstract
ThedistributionofD-galactosylgroupsalongtheD-mannanbackbone(finestructure)ofcarobandguargalactomannanshasbeenstudiedbyacomputeranalysisoftheamountsandstructuresofoligosaccharidesreleasedonhydrolysisofthepolymerswithtwohighlypurifiedβ-D-mannanasesisolatedfromgerminatedguarseedandfromAspergillusnigercultures.Computerprogrammesweredevelopedwhichaccountedforthespecificsubsite-bindingrequirementsoftheβ-D-mannanasesandwhichsimulatedthesynthesisofgalactomannanbyprocessesinwhichtheD-galactosylgroupsweretransferredtothegrowingD-mannanchainineitherastatisticallyrandommannerorasinfluencedbynearest-neighbour/second-nearest-neighboursubstitution.Suchamodelwaschosenasitisconsistentwiththeknownpatternofsynthesisofsimilarpolysaccharides,forexample,xyloglucan;also,additiontoapreformedmannanchainwouldbeunlikely,duetotheinsolublenatureofsuchpolymers.TheD-galactosedistributionincarobgalactomannanandinthehot-andcold-water-solublefractionsofcarobgalactomannanhasbeenshowntobenon-regular,withahighproportionofsubstitutedcouplets,lesseramountsoftriplets,andanabsenceofblocksofsubstitution.TheprobabilityofsequencesinwhichalternateD-mannosylresiduesaresubstitutedislow.TheprobabilitydistributionofblocksizesforunsubstitutedD-mannosylresiduesindicatesthatthereisahigherproportionofblocksofintermediatesizethanwouldbepresentinagalactomannanwithastatisticallyrandomD-galactosedistribution.Basedonthealmostidenticalpatternsofamountsofoligosaccharidesproducedonhydrolysiswithβ-D-mannanase,itappearsthatgalactomannansfromseedofawiderangeofcarobvaritieshavethesamefine-structure.TheD-galactosedistributioninguar-seedgalactomannanalsoappearstobenon-regular,andgalactomannansfromdifferentguar-seedvarietiesappeartohavethesamefine-structure.
Effectofgalactose-substitution-patternsontheinteractionpropertiesofgalactomannas.
Dea,I.C.M.,Clark,A.H.&McCleary,B.V.(1986).CarbohydrateResearch,147(2),275-294.
LinktoArticle
ReadAbstract
ArangeofgalactomannansvaryingwidelyinthecontentsofD-galactosehavebeencomparedforself-associationandtheirinteractionpropertieswithagaroseandxanthan.Whereas,ingeneral,themostinteractivegalactomannansarethoseinwhichthe(1→4)-β-D-mannanchainisleastsubstitutedbyα-D-galactosylstubs,evidenceispresentedwhichindicatesthatthedistributionofD-galactosylgroupsalongthebackbone(finestructure)canhaveasignificanteffectontheinteractionproperties.Forgalactomannanscontaining<30% of="" d-galactose,="" those="" which="" contain="" a="" higher="" frequency="" of="" unsubstituted="" blocks="" of="" intermediate="" length="" in="" the="" β-d-mannan="" chain="" are="" most="" interactive.="" for="" galactomannans="" containing="">40%ofD-galactose,thosewhichcontainahigherfrequencyofexactlyalternatingregionsintheβ-D-mannanchainaremostinteractive.Thisselectivity,onthebasisofgalactomannanfine-structure,inmixedpolysaccharideinteractionsinvitrocouldmimictheselectivityofbindingofbranchedplant-cell-wallpolysaccharidesinBIOLOGicalsystems.30%>
Effectofthemolecularfinestructureofgalactomannansontheirinteractionproperties-theroleofunsubstitutedsides.
Dea,I.C.M.,Clark,A.H.&McCleary,B.V.(1986).FoodHydrocolloids,1(2),129-140.
LinktoArticle
ReadAbstract
ArangeofgalactomannansvaryingwidelyinthecontentofD-galactosehavebeencomparedforself-association,andtheirinteractionpropertieswithagaroseandxanthan.TheresultspresentedindicatethatingeneralthemostinteractivegalactomannansarethoseinwhichtheD-mannanmainchainbearsfewestD-galactosestubs,andconfirmthatthedistributionofD-galactosegroupsalongthemainchaincanhaveasignificanteffectontheinteractivepropertiesofthegalactomannans.Ithasbeenshownthatfreeze—thawprecipitationofgalactomannansrequiresregionsoftotallyunsubstitutedD-mannoseresiduesalongthemainchain,andthatathresholdforsignificantfreeze—thawprecipitationoccursataweight-averagelengthoftotallyunsubstitutedresiduesofapproximatelysix.ForgalactomannanshavingstructuresabovethisthresholdtheirinteractivepropertieswithotherpolysaccharidesarecontrolledbystructuralfeaturesassociatedwithtotallyunsubstitutedregionsoftheD-mannanbackbone.Incontrast,forgalactomannansbelowthisthreshold,theirinteractivepropertiesarecontrolledbystructuralfeaturesassociatedwithunsubstitutedsidesofD-mannanbackbone.
GalactomannanchangesindevelopingGleditsiaTriacanthosSeeds.
Mallett,I.,McCleary,B.V.&Matheson,N.K.(1987).Phytochemistry,26(7),1889-1894.
LinktoArticle
ReadAbstract
GalactomannanhasbeenextractedfromtheendospermofseedsofGleditsiatriacanthos(honeylocust)atdifferentstagesofdevelopment,whentheseedwasaccumulatingstoragematerial.Propertiesofthedifferentsampleshavebeenstudied.Themolecularsizedistributionbecamemoredisperseasgalactomannanaccumulatedandthegalactose:mannoseratiodecreasedslightly.SomepossIBLereasonsforthesechangesarediscussed.
Understandinghownoncatalyticcarbohydratebindingmodulescandisplayspecificityforxyloglucan.
Luís,A.S.,Venditto,I.,Temple,M.J.,Rogowski,A.,Baslé,A.,Xue,J.,Knox,J.P.,Prates,J.A.M.,Ferreira,L.M.A.,Fontes,C.M.G.A.,Najmudin,S.&Gilbert,H.J.(2013).JournalofBiologicalChemistry,288(7),4799-4809.
LinktoArticle
ReadAbstract
Plantbiomassiscentraltothecarboncycleandtoenvironmentallysustainableindustriesexemplifiedbythebiofuelsector.Plantcellwalldegradingenzymesgenerallycontainnoncatalyticcarbohydratebindingmodules(CBMs)thatfulfilatargetingfunction,whichenhancescatalysis.CBMsthatbindβ-glucanchainsoftendisplaybroadspecificityrecognizingβ1,4-glucans(cellulose),β1,3-β1,4-mixedlinkedglucansandxyloglucan,aβ1,4-glucandecoratedwithα-1,6-xyloseresidues,bytargetingstructurescommontothethreepolysaccharides.Thus,CBMsthatrecognizexyloglucantargettheβ1,4-glucanbackboneandonlyaccommodatethexylosedecorations.HereweshowthattwocloselyrelatedCBMs,CBM65AandCBM65B,derivedfromEcCel5A,aEubacteriumcellulosolvensendoglucanase,bindtoarangeofβ-glucansbut,uniquely,displaysignificantpreferenceforxyloglucan.ThestructuresofthetwoCBMsrevealaβ-sandwichfold.Theligandbindingsitecomprisestheβ-sheetthatformstheconcavesurfaceoftheproteins.Bindingtothebackbonechainsofβ-glucansismediatedprimarilybyfivearomaticresiduesthatalsomakehydrophobicinteractionswiththexylosesidechainsofxyloglucan,conferringthedistinctivespecificityoftheCBMsforthedecoratedpolysaccharide.Significantly,andincontrasttootherCBMsthatrecognizeβ-glucans,CBM65Autilizesdifferentpolarresiduestobindcelluloseandmixedlinkedglucans.Thus,Gln106iscentraltocelluloserecognition,butisnotrequiredforbindingtomixedlinkedglucans.Thisreportrevealsthemechanismbywhichβ-glucan-specificCBMscandistinguishbetweenlinearandmixedlinkedglucans,andshowhowtheseCBMscanexploitanextensivehydrophobicplatformtotargetthesidechainsofdecoratedβ-glucans.
StructuralandThermodynamicDissectionofSpecificMannanRecognitionbyaCarbohydrateBindingModule,TmCBM27.
Boraston,A.B.,Revett,T.J.,Boraston,C.M.,Nurizzo,D.&Davies,G.J.(2003).Structure,11(6),665-675.
LinktoArticle
ReadAbstract
TheC-terminal176aminoacidsofaThermotogamaritimamannanase(Man5)constituteacarbohydratebindingmodule(CBM)thathasbeenclassifiedintoCBMfamily27.TheisolatedCBM27domain,namedTmCBM27,bindstightly(Kas105–106,M-1)toβ-1,4-mannooligosaccharides,carobgalactomannan,andkonjacglucomannan,butnottocellulose(insolubleandsoluble)orsolublebirchwoodxylan.TheX-raycrystalstructuresofnativeTmCBM27,aTmCBM27-mannohexaosecomplex,andaTmCBM27-63,64,-α-D-galactosyl-mannopentaosecomplexat2.0Å,1.6Å,and1.35Å,respectively,revealthebasisofTmCBM27"sspecificityformannans.Inparticular,thelattercomplex,whichisthefirststructureofaCBMincomplexwithabranchedplantcellwallpolysaccharide,illustrateshowthearchitectureofthebindingsitecaninfluencetherecognitionofnaturallysubstitutedpolysaccharides.
Atomatoendo-β-1,4-glucanase,SlCel9C1,representsadistinctsubclasswithanewfamilyofcarbohydratebindingmodules(CBM49).
Urbanowicz,B.R.,Catalá,C.,Irwin,D.,Wilson,D.B.,Ripoll,D.R.&Rose,J.K.C.(2007).JournalofBiologicalChemistry,282(16),12066-12074.
LinktoArticle
ReadAbstract
Acriticalstructuralfeatureofmanymicrobialendo-β-1,4-glucanases(EGases,orcellulases)isacarbohydratebindingmodule(CBM),whichisrequiredforeffectivecrystallinecellulosedegradation.However,CBMsareabsentfromplantEGasesthathavebeenbiochemicallycharacterizedtodate,andaccordingly,plantEGasesarenotgenerallythoughttohavethecapacitytodegradecrystallinecellulose.WereportthebiochemicalcharacterizationofatomatoEGase,SolanumlycopersicumCel8(SlCel9C1),withadistinctC-terminalnoncatalyticmodulethatrepresentsapreviouslyuncharacterizedfamilyofCBMs.InvitrobindingstudiesdemonstratedthatthismoduleindeedbindstocrystallinecelluloseandcansimilarlybindaspartofarecombinantchimericfusionproteincontaininganEGasecatalyticdomainfromthebacteriumThermobifidafusca.Site-directedmutagenesisstudiesshowthattryptophans559and573playaroleincrystallinecellulosebinding.TheSlCel9C1CBM,whichrepresentsanewCBMfamily(CBM49),isadefiningfeatureofanewstructuralsubclass(ClassC)ofplantEGases,withmemberspresentthroughouttheplantkingdom.Inaddition,theSlCel9C1catalyticdomainwasshowntohydrolyzeartificialcellulosicpolymers,celluloseoligosaccharides,andavarietyofplantcellwallpolysaccharides.
Cloning,expressioninPichiapastoris,andcharacterizationofathermostableGH5mannanendo-1,4-β-mannosidasefromAspergillusnigerBK01.
Bien-Cuong,D.,Thi-Thu,D.,Berrin,J.G.,Haltrich,D.,Kim-Anh,T.,Sigoillot,J.C.&Yamabhai,M.(2009).MicrobialCellFactories,8(1),59.
LinktoArticle
ReadAbstract
Background:Mannansarekeycomponentsoflignocellulosepresentinthehemicellulosicfractionofplantprimarycellwalls.Mannanendo-1,4-β-mannosidases(1,4-β-D-mannanases)catalyzetherandomhydrolysisofβ-1,4-mannosidiclinkagesinthemainchainofβ-mannans.Biodegradationofβ-mannansbytheactionofthermostablemannanendo-1,4-β-mannosidaseofferssignificanttechnicaladvantagesinbiotechnologicalindustrialapplications,i.e.delignificationofkraftpulpsorthepretreatmentoflignocellulosicbiomassrichinmannanfortheproductionofsecondgenerationbiofuels,aswellasforapplicationsinoilandgaswellstimulation,extractionofvegetableoilsandcoffeebeans,andtheproductionofvalue-addedproductssuchasprebioticmannooligosaccharides(MOS).Results:Ageneencodingmannanendo-1,4-β-mannosidaseor1,4-β-D-mannanmannanohydrolase(E.C.3.2.1.78),commonlytermedβ-mannanase,fromAspergillusnigerBK01,whichbelongstoglycosylhydrolasefamily5(GH5),wasclonedandsuccessfullyexpressedheterologously(upto243μgofactiverecombinantproteinpermL)inPichiapastoris.TheenzymewassecretedbyP.pastorisandcouldbecollectedfromtheculturesupernatant.ThepurifiedenzymeappearedglycosylatedasasinglebandonSDS-PAGEwithamolecularmassofapproximately53kDa.Therecombinantβ-mannanaseishighlythermostablewithahalf-lifetimeofapproximately56hat70°CandpH4.0.Theoptimaltemperature(10-minassay)andpHvalueforactivityare80°CandpH4.5,respectively.Theenzymeisnotonlyactivetowardsstructurallydifferentmannansbutalsoexhibitslowactivitytowardsbirchwoodxylan.ApparentKmvaluesoftheenzymeforkonjacglucomannan(lowviscosity),locustbeangumgalactomannan,carobgalactomannan(lowviscosity),and1,4-β-D-mannan(fromcarob)are0.6mgmL-1,2.0mgmL-1,2.2mgmL-1and1.5mgmL-1,respectively,whiletheKcatvaluesforthesesubstratesare215s-1,330s-1,292s-1and148s-1,respectively.JudgedfromthespecificityconstantsKcat/Km,glucomannanisthepreferredsubstrateoftheA.nigerβ-mannanase.Analysisbythinlayerchromatographyshowedthatthemainproductfromenzymatichydrolysisoflocustbeangumismannobiose,withonlylowamountsofmannotrioseandhighermanno-oligosaccharidesformed.Conclusion:Thisstudyisthefirstreportonthecloningandexpressionofathermostablemannanendo-1,4-β-mannosidasefromA.nigerinPichiapastoris.Theefficientexpressionandeaseofpurificationwillsignificantlydecreasetheproductioncostsofthisenzyme.TakingadvantageofitsacidicpHoptimumandhighthermostability,thisrecombinantβ-mannanasewillbevaluableinvariousbiotechnologicalapplications.
Promiscuityinligand-binding:thethree-dimensionalstructureofaPiromycescarbohydrate-bindingmodule,CBM29-2,incomplexwithcello-andmannohexaose.
Charnock,S.J.,Bolam,D.N.,Nurizzo,D.,Szabó,L.,McKie,V.A.,Gilbert,H.J.&Davies,G.J.(2002).ProceedingsoftheNationalAcademyofSciences,99(22),14077-14082.
LinktoArticle
ReadAbstract
Carbohydrate–proteinrecognitioniscentraltomanybiologicalprocesses.Enzymesthatactonpolysaccharidesubstratesfrequentlycontainnoncatalyticdomains,“carbohydrate-bindingmodules”(CBMs),thattargettheenzymetotheappropriatesubstrate.CBMsthatrecognizespecificplantstructuralpolysaccharidesareoftenabletoaccommodateboththevariablebackboneandtheside-chaindecorationsofheterogeneousligands.“CBM29”modules,derivedfromanoncatalyticcomponentofthePiromycesequicellulase/hemicellulasecomplex,provideanexampleofthisselectiveyetflexiblerecognition.Theydiscriminatestronglyagainstsomepolysaccharideswhileremainingrelativelypromiscuoustowardbothβ-1,4-linkedmanno-andcello-oligosaccharides.Thisfeaturemayreflectpreferential,butflexible,targetingtowardglucomannansintheplantcellwall.Thethree-dimensionalstructureofCBM29-2anditscomplexeswithcello-andmannohexaoserevealaβ-jelly-rolltopology,withanextendedbindinggrooveontheconcavesurface.Theorientationofthearomaticresiduescomplementstheconformationofthetargetsugarpolymerwhileaccommodationofbothmanno-andgluco-configuredoligo-andpolysaccharidesisconferredbyvirtueoftheplasticityofthedirectinteractionsfromtheiraxialandequatorial2-hydroxyls,respectively.Suchflexibleligandrecognitiontargetstheanaerobicfungalcomplextoarangeofdifferentcomponentsintheplantcellwallandthusplaysapivotalroleinthehighlyefficientdegradationofthiscompositestructurebythemicrobialeukaryote.
Family42carbohydrate-bindingmodulesdisplaymultiplearabinoxylan-bindinginterfacespresentingdifferentligandaffinities.
Ribeiro,T.,Santos-Silva,T.,Alves,V.D.,Dias,F.M.V.,Luís,A.S.,Prates,J.A.M.,Ferraira,L.M.A.,Romao,M.J.&Fontes,C.M.G.A.(2010).BiochimicaetBiophysicaActa(BBA)-ProteinsandProteomics,1804(10),2054-2062.
LinktoArticle
ReadAbstract
Enzymesthatdegradeplantcellwallpolysaccharidesdisplayamodulararchitecturecomprisingacatalyticdomainboundtooneormorenon-catalyticcarbohydrate-bindingmodules(CBMs).CBMsdisplayconsiderablevariationinprimarystructureandaregroupedinto59sequence-basedfamiliesorganizedintheCarbohydrate-ActiveenZYme(CAZy)database.HerewereportthecrystalstructureofCtCBM42Atogetherwiththebiochemicalcharacterizationoftwoothermembersoffamily42CBMsfromClostridiumthermocellum.CtCBM42A,CtCBM42BandCtCBM42Cbindspecificallytothearabinoseside-chainsofarabinoxylansandarabinan,suggestingthatvariouscellulosomalcomponentsaretargetedtotheseregionsoftheplantcellwall.ThestructureofCtCBM42Adisplaysabeta-trefoilfold,whichcomprises3sub-domainsdesignatedasα,βandγ.Eachoneofthethreesub-domainspresentsaputativecarbohydrate-bindingpocketwhereanaspartateresiduelocatedinacentralpositiondominatesligandrecognition.Intriguingly,theγsub-domainofCtCBM42Aispivotalforarabinoxylanbinding,whiletheconcertedactionofβandγsub-domainsofCtCBM42BandCtCBM42Cisapparentlyrequiredforligandsequestration.Thus,thisworkrevealsthatthebindingmechanismofCBM42membersisincontrastwiththatofhomologousCBM13swhererecognitionofcomplexpolysaccharidesresultsfromthecooperativeactionofthreeproteinsub-domainspresentingsimilaraffinities.
Functionalgenomicanalysissupportsconservationoffunctionamongcellulosesynthase-likeAgenefamilymembersandsuggestsdiverserolesofmannansinplants.
Liepman,A.H.,Nairn,C.J.,Willats,W.G.T.,Sørensen,I.,Roberts,A.W.&Keegstra,K.(2007).PlantPhysiology,143(4),1881-1893.
LinktoArticle
ReadAbstract
Mannanpolysaccharidesarewidespreadamongplants,wheretheyserveasstructuralelementsincellwalls,ascarbohydratereserves,andpotentiallyperformotherimportantfunctions.Previousworkhasdemonstratedthatmembersofthecellulosesynthase-likeA(CslA)familyofglycosyltransferasesfromArabidopsis(Arabidopsisthaliana),guar(Cyamopsistetragonolobus),andPopulustrichocarpacatalyseβ-1,4-mannanandglucomannansynthasereactionsinvitro.MannanpolysaccharidesandhomologsofCslAgenesappeartobepresentinalllineagesoflandplantsanalyzedtodate.Inmanyplants,theCslAgenesaremembersofextendedmultigenefamilies;however,itisnotknownwhetherallCslAproteinsareglucomannansynthases.CslAproteinsfromdiverselandplantspecies,includingrepresentativesofthemono-anddicotyledonousangiosperms,gymnosperms,andbryophytes,wereproducedininsectcells,andeachCslAproteincatalyzedmannanandglucomannansynthasereactionsinvitro.Microarrayminingandquantitativereal-timereversetranscription-polymerasechainreactionanalysisdemonstratedthattranscriptsofArabidopsisandloblollypine(Pinustaeda)CslAgenesdisplaytissue-specificexpressionpatternsinvegetativeandfloraltissues.GlycanmicroarrayanalysisofArabidopsisindicatedthatmannansarepresentthroughouttheplantandareespeciallyabundantinflowers,siliques,andstems.MannansarealsopresentinchloronemalandcaulonemalfilamentsofPhyscomitrellapatens,wheretheyareprevalentatcelljunctionsandinbuds.Takentogether,theseresultsdemonstratethatmembersoftheCslAgenefamilyfromdiverseplantspeciesencodeglucomannansynthasesandsupportthehypothesisthatmannansfunctioninmetabolicnetworksdevotedtoothercellularprocessesinadditiontocellwallstructureandcarbohydratestorage.
PurificationandCharacterizationofaThermostableβ-mannanasefromBacillussubtilisBE-91:PotentialApplicationinInflammatoryDiseases.
Cheng,L.,Duan,S.,Feng,X.,Zheng,K.,Yang,Q.&Liu,Z.(2016).BioMedResearchInternational,ArticleID6380147.
LinktoArticle
ReadAbstract
β-mannanasehasshowncompellingbiologicalfunctionsbecauseofitsregulatoryrolesinmetabolism,inflammation,andoxidation.Thisstudyseparatedandpurifiedtheβ-mannanasefromBacillussubtilisBE-91,whichisapowerfulhemicellulose-degradingbacteriumusinga“two-step”methodcomprisingultrafiltrationandgelchromatography.Thepurifiedβ-mannanase(about28.2 kDa)showedhighspecificactivity(79,859.2 IU/mg).TheoptimumtemperatureandpHwere65°Cand6.0,respectively.Moreover,theenzymewashighlystableattemperaturesupto70°CandpH4.5-7.0.Theβ-mannanaseactivitywassignificantlyenhancedinthepresenceofMn+,Cu2+,Zn2+,Ca2+,Mg2+,andAl3+andstronglyinhibitedbyBa2+,andPb2+.KmandVmaxvaluesforlocustbeangumwere7.14 mg/mLand107.5 μmol/min/mLversus1.749 mg/mLand33.45 µmol/min/mLforKonjacglucomannan,respectively.Therefore,β-mannanasepurifiedbythisworkshowsstabilityathightemperaturesandinweaklyacidicorneutralenvironments.Basedonsuchdata,theβ-mannanasewillhavepotentialapplicationsasadietarysupplementintreatmentofinflammatoryprocesses.
DoescelluloseIIexistinnativealgacellwalls?CellulosestructureofDerbesiacellwallsstudiedwithSFG,IRandXRD.
Park,Y.B.,Kafle,K.,Lee,C.M.,Cosgrove,D.J.,&Kim,S.H.(2015).Cellulose,22(6),3531-3540.
LinktoArticle
ReadAbstract
Innature,algaeproducecelluloseIwhereallglucanchainsarealignedparallel.However,thepresenceofcelluloseIIwithanti-parallelglucanchainshasbeenreportedforcertainDerbesia(Chlorophyceaealgae)cellwalls;ifthisistrue,itwouldmeananewbiologicalprocessforsynthesizingcellulosethathasnotyetbeenrecognized.Toanswerthisquestion,weexaminedcellulosestructureinDerbesiacellwalls,intactaswellastreatedwithcelluloseisolationprocedures,usingsum-frequency-generationspectroscopy,infrared(IR)spectroscopyandX-raydiffraction(XRD).Derbesiawallscontainlargeamountsofmannanandsmallamountsofcrystallinecellulose.EvidenceforcelluloseIIintheintactcellwallswasnotfound,whereascelluloseIIinthetrifluoroaceticacid(TFA)treatedcellwallsamplesweredetectedbyIRandXRD.Acontrolexperimentconductedwithball-milledAvicelcellulosesamplesshowedthatcelluloseIIstructurecouldbeformedasaresultofTFAtreatmentanddryingofamorphouscellulose.ThesedatasuggestthatthecelluloseIIstructuredetectedintheTFA-treatedDerbesiagametophytewallsamplesismostlikelyduetoreorganizationofamorphouscelluloseduringthesamplepreparation.OurresultscontradictthepreviousreportofcelluloseIIinnativealgacellwalls.EvenifthecrystallinecelluloseIIexistsinintactDerbesiagametophytecellwalls,itsamountwouldbeverysmall(belowthedetectionlimit)andthusbiologicallyinsignificant.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们