巨酶/葡甘聚糖(魔芋;低粘度)/P-GLCML/4克
商品编号:
P-GLCML
品牌:
Megazyme INC
市场价:
¥3288.00
美元价:
1972.80
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityGlucomannan(Konjac;LowViscosity)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Purity>98%.Glucose:Mannose=40:60.Acetylated.Viscosity~2CST.
Alkalinehydrogenperoxidepretreatmentofsoftwood:Hemicellulosedegradationpathways.
Alvarez-Vasco,C.&Zhang,X.(2013).BioresourceTechnology,150,321-327.
LinktoArticle
ReadAbstract
Thisstudyinvestigatedsoftwoodhemicellulosesdegradationpathwaysduringalkalinehydrogenperoxide(AHP)pretreatmentofDouglasfir.ItwasfoundthatglucomannanismuchmoresusceptIBLetoalkalinepretreatmentthanxylan.Organicacids,includinglactic,succinic,glycolicandformicacidarethepredominantproductsfromglucomannandegradation.Atlowtreatmenttemperature(90°C),asmallamountofformicacidisproducedfromglucomannan,whereasglucomannandegradationtolacticacidandsuccinicacidbecomesthemainreactionsat140°Cand180°C.TheadditionofH2O2duringalkalinepretreatmentofD.firledtoasignificantremovaloflignin,whichsubsequentlyfacilitatedglucomannansolubilization.However,H2O2haslittledirecteffectontheglucomannandegradationreaction.Themaindegradationpathwaysinvolvedinglucomannanconversiontoorganicsacidsareelucidated.Theresultsfromthisstudydemonstratethepotentialtooptimizepretreatmentconditionstomaximizethevalueofbiomasshemicellulose.
Arevisedarchitectureofprimarycellwallsbasedonbiomechanicalchangesinducedbysubstrate-specificendoglucanases.
Park,Y.B.&Cosgrove,D.J.(2012).PlantPhysiology,158(4),1933-1943.
LinktoArticle
ReadAbstract
Xyloglucaniswidelybelievedtofunctionasatetherbetweencellulosemicrofibrilsintheprimarycellwall,limitingcellenlargementbyrestrictingtheABIlityofmicrofibrilstoseparatelaterally.Totestthebiomechanicalpredictionsofthis“tetherednetwork”model,weassessedtheabilityofcucumber(Cucumissativus)hypocotylwallstoundergocreep(long-term,irreversibleextension)inresponsetothreefamily-12endo-β-1,4-glucanasesthatcanspecificallyhydrolyzexyloglucan,cellulose,orboth.Xyloglucan-specificendoglucanase(XEGfromAspergillusaculeatus)failedtoinducecellwallcreep,whereasanendoglucanasethathydrolyzesbothxyloglucanandcellulose(Cel12AfromHypocreajecorina)inducedahighcreeprate.Acellulose-specificendoglucanase(CEGfromAspergillusniger)didnotcausecellwallcreep,eitherbyitselforincombinationwithXEG.Testswithadditionalenzymes,includingafamily-5endoglucanase,confirmedtheconclusionthattocausecreep,endoglucanasesmustcutbothxyloglucanandcellulose.Similarresultswereobtainedwithmeasurementsofelasticandplasticcompliance.BothXEGandCel12Ahydrolyzedxyloglucaninintactwalls,butCel12AcouldhydrolyzeaminorxyloglucancompartmentrecalcitranttoXEGdigestion.XyloglucaninvolvementintheseenzymeresponseswasconfirmedbyexperimentswithArabidopsis(Arabidopsisthaliana)hypocotyls,whereCel12Ainducedcreepinwild-typebutnotinxyloglucan-deficient(xxt1/xxt2)walls.Ourresultsareincompatiblewiththecommondepictionofxyloglucanasaload-bearingtetherspanningthe20-to40-nmspacingbetweencellulosemicrofibrils,buttheydoimplicateaminorxyloglucancomponentinwallmechanics.Thestructurallyimportantxyloglucanmaybelocatedinlimitedregionsoftightcontactbetweenmicrofibrils.
MethodologiesfortheextractionandanalysisofkonjacglucomannanfromcormsofAmorphophalluskonjacK.Koch.
Chua,M.,Chan,K.,Hocking,T.J.,Williams,P.A.,Perry,C.J.&Baldwin,T.C.(2012).CarbohydratePolymers,87(3),2202-2210.
LinktoArticle
ReadAbstract
Herewepresentacomparisonofcommonlyusedmethodologiesfortheextractionandquantificationofkonjacglucomannan(KGM).Compositionalanalysisshowedthatthepurifiedkonjacflour(PKF)producedusingamodifiedextractionprocedurecontained92%glucomannan,withaweightaveragemolecularweight(Mw),polydispersityindex(PDI)anddegreeofacetylation(DA)of9.5±0.6×105gmol-1,1.2and2.8wt.%.Thesedata,plusFourier-transforminfraredspectral(FTIR)andzeroshearviscosityanalysesoftheextract(PKF)wereallconsistentwiththeliterature.ComparisonofthreeexistingmethodologiesforthequantitativeanalysisoftheKGMcontentofthePKF,namely3,5-dinitrosalicylicacid(3,5-DNS),phenol–sulphuricacidandenzymaticcolorimetricassays;indicatedthatthe3,5-DNScolorimetricassaywasthemostreproducibleandaccuratemethod,withalinearcorrelationcoefficientof0.997forsamplesrangingfrom0.5to12.5mg/ml,andrecoveriesbetween97%and103%acrossthreespikinglevels(250,500and750μg/g)ofstarch.Thesedataprovidethebasisofimprovedgoodlaboratorypractice(GLP)forthecommercialextractionandanalysisofthismultifunctionalnaturalpolymer.
Cloning,expressioninPichiapastoris,andcharacterizationofaThermostableGH5mannanendo-1,4-β-mannosidasefromAspergillusnigerBK01.
Bien-Cuong,D.,Thi-Thu,D.,Berrin,J.G.,Haltrich,D.,Kim-Anh,T.,Sigoillot,J.C.&Yamabhai,M.(2009).MicrobialCellFactories,8(1),59.
LinktoArticle
ReadAbstract
Background:Mannansarekeycomponentsoflignocellulosepresentinthehemicellulosicfractionofplantprimarycellwalls.Mannanendo-1,4-β-mannosidases(1,4-β-D-mannanases)catalyzetherandomhydrolysisofβ-1,4-mannosidiclinkagesinthemainchainofβ-mannans.Biodegradationofβ-mannansbytheactionofthermostablemannanendo-1,4-β-mannosidaseofferssignificanttechnicaladvantagesinbiotechnologicalindustrialapplications,i.e.delignificationofkraftpulpsorthepretreatmentoflignocellulosicbiomassrichinmannanfortheproductionofsecondgenerationbiofuels,aswellasforapplicationsinoilandgaswellstimulation,extractionofvegetableoilsandcoffeebeans,andtheproductionofvalue-addedproductssuchasprebioticmanno-oligosaccharides(MOS).Results:Ageneencodingmannanendo-1,4-β-mannosidaseor1,4-β-D-mannanmannanohydrolase(E.C.3.2.1.78),commonlytermedβ-mannanase,fromAspergillusnigerBK01,whichbelongstoglycosylhydrolasefamily5(GH5),wasclonedandsuccessfullyexpressedheterologously(upto243μgofactiverecombinantproteinpermL)inPichiapastoris.TheenzymewassecretedbyP.pastorisandcouldbecollectedfromtheculturesupernatant.ThepurifiedenzymeappearedglycosylatedasasinglebandonSDS-PAGEwithamolecularmassofapproximately53kDa.Therecombinantβ-mannanaseishighlythermostablewithahalf-lifetimeofapproximately56hat70°CandpH4.0.Theoptimaltemperature(10-minassay)andpHvalueforactivityare80°CandpH4.5,respectively.Theenzymeisnotonlyactivetowardsstructurallydifferentmannansbutalsoexhibitslowactivitytowardsbirchwoodxylan.ApparentKmvaluesoftheenzymeforkonjacglucomannan(lowviscosity),locustbeangumgalactomannan,carobgalactomannan(lowviscosity),and1,4-β-D-mannan(fromcarob)are0.6mgmL-1,2.0mgmL-1,2.2mgmL-1and1.5mgmL-1,respectively,whiletheKcatvaluesforthesesubstratesare215s-1,330s-1,292s-1and148s-1respectively.JudgedfromthespecificityconstantsKcat/Km,glucomannanisthepreferredsubstrateoftheA.nigerβ-mannanase.Analysisbythinlayerchromatographyshowedthatthemainproductfromenzymatichydrolysisoflocustbeangumismannobiose,withonlylowamountsofmannotrioseandhighermanno-oligosaccharidesformed.Conclusion:Thisstudyisthefirstreportonthecloningandexpressionofathermostablemannanendo-1,4-β-mannosidasefromA.nigerinPichiapastoris.Theefficientexpressionandeaseofpurificationwillsignificantlydecreasetheproductioncostsofthisenzyme.TakingadvantageofitsacidicpHoptimumandhighthermostability,thisrecombinantβ-mannanasewillbevaluableinvariousbiotechnologicalapplications.
EfficientrecombinantexpressionandsecretionofathermostableGH26mannanendo-1,4-β-mannosidasefromBacilluslicheniformisinEscherichiacoli.
Songsiriritthigul,C.,Buranabanyat,B.,Haltrich,D.&Yamabhai,M.(2010).MicrobialCellFactories,9(1),20.
LinktoArticle
ReadAbstract
Background:Mannansareoneofthekeypolymersinhemicellulose,amajorcomponentoflignocellulose.TheMannanendo-1,4-β-mannosidaseor1,4-β-D-mannanase(EC3.2.1.78),commonlynamedβ-mannanase,isanenzymethatcancatalyzerandomhydrolysisofβ-1,4-mannosidiclinkagesinthemainchainofmannans,glucomannansandgalactomannans.Theenzymehasfoundanumberofapplicationsindifferentindustries,includingfood,feed,pharmaceutical,pulp/paperindustries,aswellasgaswellstimulationandpretreatmentoflignocellulosicbiomassfortheproductionofsecondgenerationbiofuel.BacilluslicheniformisisaGram-positiveendospore-formingmicroorganismthatisgenerallynon-pathogenicandhasbeenusedextensivelyforlarge-scaleindustrialproductionofvariousenzymes;however,therehasbeennopreviousreportonthecloningandexpressionofmannanendo-1,4-β-mannosidasegene(manB)fromB.licheniformis.Results:Themannanendo-1,4-β-mannosidasegene(manB),commonlyknownasβ-mannanase,fromBacilluslicheniformisstrainDSM13wasclonedandoverexpressedinEscherichiacoli.Theenzymecanbeharvestedfromthecelllysate,periplasmicextract,orculturesupernatantwhenusingthepFLAGexpressionsystem.Atotalactivityofapproximately50,000unitscouldbeobtainedfrom1-lshakeflaskcultures.Therecombinantenzymewas6×His-taggedatitsC-terminus,andcouldbepurifiedbyone-stepimmobilizedmetalaffinitychromatography(IMAC)toapparenthomogeneity.Thespecificactivityofthepurifiedenzymewhenusinglocustbeangumassubstratewas1672±96units/mg.TheoptimalpHoftheenzymewasbetweenpH6.0-7.0;whereastheoptimaltemperaturewasat50-60°C.Therecombinantβ-mannanasewasstablewithinpH5-12afterincubationfor30minat50°C,andwithinpH6-9afterincubationat50°Cfor24h.Theenzymewasstableattemperaturesupto50°Cwithahalf-lifetimeofactivity(τ1/2)ofapproximately80hat50°CandpH6.0.Analysisofhydrolyticproductsbythinlayerchromatographyrevealedthatthemainproductsfromthebioconversionoflocusbeangumandmannanwerevariousmanno-oligosaccharideproducts(M2-M6)andmannose.Conclusion:Ourstudydemonstratesanefficientexpressionandsecretionsystemfortheproductionofarelativelythermo-andalkali-stablerecombinantβ-mannanasefromB.licheniformisstrainDSM13,suitableforvariousbiotechnologicalapplications.
Influenceofamannanbindingfamily32carbohydratebindingmoduleontheactivityoftheappendedmannanase.
Mizutani,K.,Fernandes,V.O.,Karita,S.,Luís,A.S.,Sakka,M.,Kimura,T.,Jackson,A.,Zhang,X.,Fontes,C.M.G.A.,Gilbert,H.J.&Sakka,K.(2012).AppliedandEnvironmentalMicroBIOLOGy,78(14),4781-4787.
LinktoArticle
ReadAbstract
Ingeneral,cellulasesandhemicellulasesaremodularenzymesinwhichthecatalyticdomainisappendedtooneormorenoncatalyticcarbohydratebindingmodules(CBMs).CBMs,byconcentratingtheparentalenzymeattheirtargetpolysaccharide,increasethecapacityofthecatalyticmoduletobindthesubstrate,leADIngtoapotentiationincatalysis.ClostridiumthermocellumhypotheticalproteinCthe_0821,definedhereasC.thermocellumMan5A,isamodularproteincomprisinganN-terminalsignalpeptide,afamily5glycosidehydrolase(GH5)catalyticmodule,afamily32CBM(CBM32),andaC-terminaltypeIdockerinmodule.RecentproteomicstudiesrevealedthatCthe_0821isoneofthemajorcellulosomalenzymeswhenC.thermocellumisculturedoncellulose.HereweshowthattheGH5catalyticmoduleofCthe_0821displaysendomannanaseactivity.C.thermocellumMan5Ahydrolyzessolublekonjacglucomannan,solublecarobgalactomannan,andinsolubleivorynutmannanbutdoesnotattackthehighlygalactosylatedmannanfromguargum,suggestingthattheenzymeprefersunsubstitutedβ-1,4-mannosidelinkages.TheCBM32ofC.thermocellumMan5Adisplaysapreferenceforthenonreducingendsofmannooligosaccharides,althoughtheproteinmoduleexhibitsmeasurableaffinityfortheterminiofβ-1,4-linkedglucooligosaccharidessuchascellobiose.CBM32potentiatestheactivityofC.thermocellumMan5Aagainstinsolublemannansbuthasnosignificanteffectonthecapacityoftheenzymetohydrolyzesolublegalactomannansandglucomannans.TheproductprofileofC.thermocellumMan5AisaffectedbythepresenceofCBM32.
StructuralandThermodynamicDissectionofSpecificMannanRecognitionbyaCarbohydrateBindingModule,TmCBM27.
Boraston,A.B.,Revett,T.J.,Boraston,C.M.,Nurizzo,D.&Davies,G.J.(2003).Structure,11(6),665-675.
LinktoArticle
ReadAbstract
TheC-terminal176aminoacidsofaThermotogamaritimamannanase(Man5)constituteacarbohydratebindingmodule(CBM)thathasbeenclassifiedintoCBMfamily27.TheisolatedCBM27domain,namedTmCBM27,bindstightly(Kas105–106,M-1)toβ-1,4-mannooligosaccharides,carobgalactomannan,andkonjacglucomannan,butnottocellulose(insolubleandsoluble)orsolublebirchwoodxylan.TheX-raycrystalstructuresofnativeTmCBM27,aTmCBM27-mannohexaosecomplex,andaTmCBM27-63,64,-α-D-galactosyl-mannopentaosecomplexat2.0Å,1.6Å,and1.35Å,respectively,revealthebasisofTmCBM27"sspecificityformannans.Inparticular,thelattercomplex,whichisthefirststructureofaCBMincomplexwithabranchedplantcellwallpolysaccharide,illustrateshowthearchitectureofthebindingsitecaninfluencetherecognitionofnaturallysubstitutedpolysaccharides.
Mannantransglycosylase:anovelenzymeactivityincellwallsofhigherplants.
Schröder,R.,Wegrzyn,T.F.,Bolitho,K.M.&Redgwell,R.J.(2004).Planta,219(4),590-600.
LinktoArticle
ReadAbstract
Mannantransglycosylaseisanovelcellwallenzymeactivityactingonmannan-basedplantpolysaccharidesinprimarycellwallsofmonocotyledonsanddicotyledons.Theenzymeactivitywasdetectedbyitsabilitytotransfergalactoglucomannan(GGM)polysaccharidestotritium-labelledGGM-derivedoligosaccharidesgeneratingtritium-labelledGGMpolysaccharides.Mannantransglycosylasewasfoundinarangeofplantspeciesandtissues.Highlevelsoftheenzymeactivitywerepresentinflowersofsomekiwifruit(Actinidia)speciesandinripetomato(SolanumlycopersicumL.)fruit.Lowlevelsweredetectedinmaturegreentomatofruitandactivityincreasedduringtomatofruitripeninguptotheredripestage.Essentiallyallactivitywasfoundinthetomatoskinandoutermost2mmoftissue.Mannantransglycosylaseactivityintomatoskinandouterpericarpisspecificformannan-basedplantpolysaccharides,includingGGM,galactomannan,glucomannanandmannan.Theexactstructuralrequirementsforvalidacceptorsremaintobedefined.Nevertheless,amannoseresidueatthesecondpositionofthesugarchainandtheabsenceofagalactosesubstituentonthefourthresidue(countingfromthenon-reducingend)appeartobeminimalrequirements.Mannan-basedpolysaccharidesintheplantcellwallmayhavearoleanalogoustothatofxyloglucans,introducingflexibilityandforminggrowth-restrainingnetworkswithcellulose.Thusmannantransglycosylaseandxyloglucanendotransglycosylase,theonlyotherknowntransglycosylaseactivityinplantcellwalls,maybothbeinvolvedinremodellingandrefiningthecelluloseframeworkindevelopmentalprocessesthroughoutthelifeofaplant.
Xyloglucansofmonocotyledonshavediversestructures.
Hsieh,Y.S.&Harris,P.J.(2009).MolecularPlant,2(5),943-965.
LinktoArticle
ReadAbstract
ExceptinthePoaceae,littleisknownaboutthestructuresofthexyloglucansintheprimarywallsofmonocotyledons.Xyloglucanstructuresinarangeofmonocotyledonspecieswereexamined.Wallpreparationswereisolated,extractedwith6 Msodiumhydroxide,andtheextractstreatedwithaxyloglucan-specificendo-(1→4)-β-glucanasepreparation.Theoligosaccharidesreleasedwereanalyzedbyhigh-performanceanion-exchangechromatographyandbymatrix-assistedlaser-desorptionionizationtime-of-flightmassspectrometry.Oligosaccharideprofilesofthenon-commelinidmonocotyledonsweresimilartothoseofmosteudicotyledons,indicatingthexyloglucanswerefucogalactoxyloglucans,withaXXXGacoremotifandthefucosylatedunitsXXFGandXLFG.AnexceptionwasLemnaminor(Araceae),whichyieldednofucosylatedoligosaccharidesandhadbothXXXGandXXGncoremotifs.ExceptfortheArecales(palms)andtheDasypogonaceae,whichhadfucogalactoxyloglucans,thexyloglucansofthecommelinidmonocotyledonswerestructurallydifferent.TheZingiberalesandCommelinaleshadxyloglucanswithbothXXGnandXXXGcoremotifs;smallproportionsofXXFGunits,butnoXLFGunits,werepresent.InthePoales,thePoaceaehadxyloglucanswithaXXGncoremotifandnofucosylatedunits.IntheotherPoalesfamilies,somehadbothXXXGandXXGncoremotifs,othershadonlyXXXG;XXFGunitswerepresent,butXLFGunitswerenot.
Cellulosemicrofibrilanglesandcell-wallpolymersindifferentwoodtypesofPinusradiata.
Brennan,M.,McLean,J.P.,Altaner,C.M.,Ralph,J.&Harris,P.J.(2012).Cellulose,19(4),1385-1404.
LinktoArticle
ReadAbstract
FourcorewoodtypeswereexaminedfromsaplingtreesoftwoclonesofPinusradiatagrowninaglasshouse.Treesweregrowneitherstraighttoproducenormalcorewood,tiltedat45°fromtheverticaltoproduceoppositecorewoodandcompressioncorewood,orrockedtoproduceflexurecorewood.MeancellulosemicrofibrilangleoftracheidwallswasestimatedbyX-raydiffractionandlongitudinalswellingmeasuredbetweenanovendryandmoisturesaturatedstate.Ligninandacetylcontentsofthewoodsweremeasuredandthemonosaccharidecompositionsofthecell-wallpolysaccharidesdetermined.Finelymilledwoodwasanalysedusingsolution-state2DNMRspectroscopyofgelsfromfinelymilledwoodinDMSO-d6/pyridine-d5.Althoughtherewasnosignificantdifferenceincellulosemicrofibrilangleamongthecorewoodtypes,compressioncorewoodhadthehighestlongitudinalswelling.Alignincontent>32%andagalactosylresiduecontent>6%clearlydividedseverecompressioncorewoodfromtheothercorewoodtypes.Relationshipscouldbedrawnbetweenlignincontentandlongitudinalswelling,andbetweengalactosylresiduecontentandlongitudinalswelling.The2DNMRspectrashowedthatthepresenceofH-unitsinligninwasexclusivetocompressioncorewood,whichalsohadahigher(1→4)-β-D-galactancontent,definingauniquecompositionforthatcorewoodtype.
Divalenttoxoidsloadedstablechitosan–glucomannannanoassembliesforefficientsystemic,mucosalandcellularimmunostimulatoryresponsefollowingoraladmiNISTration.
Harde,H.,Siddhapura,K.,Agrawal,A.K.&Jain,S.(2015).InternationalJournalofPharmaceutics,487(1),292-304.
LinktoArticle
ReadAbstract
Thepresentstudyreportsdualtetanusanddiphtheriatoxoidsloadedstablechitosan–glucomannannanoassemblies(sCh–GM-NAs)formulatedusingtandemionicgelationtechniquefororalmucosalimmunization.Thestable,lyophilizedsCh–GM-NAsexhibited~152 nmparticlesizeand~85%EEofboththetoxoids.ThelyophilizedsCh–GM-NAsdisplayedexcellentstabilityinbiomimeticmediaandpreservedchemical,conformationandbiologicalstabilityofencapsulatedtoxoids.ThehigherintracellularAPCsuptakeofsCh–GM-NAswasconcentrationandtimedependentwhichmaybeattributedtothereceptormediatedendocytosisviamannoseandglucosereceptor.ThehigherCaco-2uptakeofsCh–GM-NAswasfurtherconfirmedbyexvivointestinaluptakestudies.The invivo evaluationrevealedthatsCh–GM-NAsposedsignificantly(p < 0.001)higher=""humoral,=""mucosal=""and=""cellular=""immune=""response=""than=""other=""counterparts=""by=""eliciting=""complete=""protective=""levels=""of=""anti-tt=""and=""anti-dt=""(~0.1 iu/ml)=""antibodies.=""importantly,=""commercial=""‘dual=""antigen’=""vaccine=""administered=""through=""oral=""or=""intramuscular=""route=""was=""unable=""to=""elicit=""all=""type=""of=""immune=""response.=""conclusively,=""sch–gm-nas=""could=""be=""considered=""as=""promising=""vaccine=""adjuvant=""for=""oral=""mucosal=""immunization.=""> 0.001)>
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们