Megazyme/甘露聚糖(象牙坚果)/P-MANIV/3克
商品编号:
P-MANIV
品牌:
Megazyme INC
市场价:
¥3576.00
美元价:
2145.60
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityMannan(IvoryNut)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Purity>98%.1,4-β-D-Mannan.Treatedwithsodiumborohydridetolowerreducingsugarlevels.TracesofarABInoseandxylose.
Roleof(1,3)(1,4)β-glucanincellwalls:Interactionwithcellulose.
Kiemle,S.N.,Zhang,X.,Esker,A.R.,Toriz,G.,Gatenholm,P.&Cosgrove,D.J.(2014).Biomacromolecules,15(5),1727-1736.
LinktoArticle
ReadAbstract
(1,3)(1,4)-β-D-Glucan(mixed-linkageglucanorMLG),acharacteristichemicelluloseinprimarycellwallsofgrasses,wasinvestigatedtodeterminebothitsroleincellwallsanditsinteractionwithcelluloseandothercellwallpolysaccharidesinvitro.BindingisothermsshowedthatMLGadsorptionontomicrocrystallinecelluloseisslow,irreversIBLe,andtemperature-dependent.MeasurementsusingquartzcrystalmicrobalancewithdissipationmonitoringshowedthatMLGadsorbedirreversiblyontoamorphousregeneratedcellulose,formingathickhydrogel.Oligosaccharideprofilingusingendo-(1,3)(1,4)-β-glucanaseindicatedthattherewasnodifferenceinthefrequencyanddistributionof(1,3)and(1,4)linksinboundandunboundMLG.ThebindingofMLGtocellulosewasreducedifthecellulosesampleswerefirsttreatedwithcertaincellwallpolysaccharides,suchasxyloglucanandglucuronoarabinoxylan.ThetetheringfunctionofMLGincellwallswastestedbyapplyingendo-(1,3)(1,4)-β-glucanasetowallsamplesinaconstantforceextensometer.Cellwallextensionwasnotinduced,whichindicatesthatenzyme-accessibleMLGdoesnottethercellulosefibrilsintoaload-bearingnetwork.
endo-β-1,4-Mannanasesfrombluemussel,Mytilusedulis:purification,characterization,andmodeofaction.
Xu,B.,Hägglund,P.,Stålbrand,H.&Janson,J.C.(2002).JournalofBiotechnology,92(3),267-277.
LinktoArticle
ReadAbstract
Twovariantsofanendo-β-1,4-mannanasefromthedigestivetractofbluemussel,Mytilusedulis,werepurifiedbyacombinationofimmobilizedmetalionaffinitychromatography,sizeexclusionchromatographyintheabsenceandpresenceofguanidinehydrochlorideandionexchangechromatography.Thepurifiedenzymeswerecharacterizedwithregardtoenzymaticproperties,molecularweight,isoelectricpoint,aminoacidcompositionandN-terminalsequence.Theyaremonomericproteinswithmolecularmassesof39 216and39 265Da,respectively,asmeasuredbyMALDI-TOFmassspectrometry.Theisoelectricpointsofbothenzymeswereestimatedtobearound7.8,howeverslightlydifferent,byisoelectricfocusinginpolyacrylamidegel.TheenzymesarestablefrompH4.0to9.0andhavetheirmaximumactivitiesatapHabout5.2.Theoptimumtemperatureofbothenzymesisaround50–55°C.Theirstabilitydecreasesrapidlywhengoingfrom40to50°C.TheN-terminalsequences(12residues)wereidenticalforthetwovariants.Theycanbecompletelyrenaturedafterdenaturationin6Mguanidinehydrochloride.TheenzymesreADIlydegradethegalactomannansfromlocustbeangumandivorynutmannanbutshownocross-specificityforxylanandcarboxymethylcellulose.Thereisnobindingabilityobservedtowardscelluloseandmannan.
Introducingporousgraphitizedcarbonliquidchromatographywithevaporativelightscatteringandmassspectrometrydetectionintocellwalloligosaccharideanalysis.
Westphal,Y.,Schols,H.A.,Voragen,A.G.J.&Gruppen,H.(2010).JournalofChromatographyA,1217(5),689-695.
LinktoArticle
ReadAbstract
Separationandcharacterizationofcomplexmixturesofoligosaccharidesisquitedifficultand,dependingonelutionconditions,structuralinformationisoftenlost.Therefore,theuseofaporous-graphitized-carbon(PGC)-HPLC-ELSD-MSn-methodasanalyticaltoolfortheanalysisofoligosaccharidesderivedfromplantcellwallpolysaccharideshasbeeninvestigated.ItisdemonstratedthatPGC-HPLCcanbewidelyusedforneutralandacidicoligosaccharidesderivedfromcellwallpolysaccharides.FurThermore,itisanon-modifyingtechniquethatenablesthecharacterizationofcellwalloligosaccharidescarrying,e.g.acetylgroupsandmethylesters.Neutraloligosaccharidesareseparatedbasedontheirsizeaswellasontheirtypeoflinkageandresulting3D-structure.Seriesoftheplanarβ-(1,4)-xylo-andβ-(1,4)-gluco-oligosaccharidesareretainedmuchmorebythePGCmaterialthantheseriesofβ-(1,4)-galacto-,β-(1,4)-manno-andα-(1,4)-gluco-oligosaccharides.Chargedoligomerssuchasα-(1,4)-galacturonicacidoligosaccharidesarestronglyretainedandareelutedonlyafteradditionoftrifluoroaceticaciddependingontheirnetcharge.Online-MS-couplingusinga1:1splitterenablesquantitativedetectionofELSDaswellassimpleidentificationofmanyoligosaccharides,evenwhenseparationofoligosaccharideswithinacomplexmixtureisnotcomplete.Consequently,PGC-HPLC-separationincombinationwithMS-detectiongivesapowerfultooltoidentifyawiderangeofneutralandacidicoligosaccharidesderivedfromvariouscellwallpolysaccharides.
Influenceofamannanbindingfamily32carbohydratebindingmoduleontheactivityoftheappendedmannanase.
Mizutani,K.,Fernandes,V.O.,Karita,S.,Luís,A.S.,Sakka,M.,Kimura,T.,Jackson,A.,Zhang,X.,Fontes,C.M.G.A.,Gilbert,H.J.&Sakka,K.(2012).AppliedandEnvironmentalMicroBIOLOGy,78(14),4781-4787.
LinktoArticle
ReadAbstract
Ingeneral,cellulasesandhemicellulasesaremodularenzymesinwhichthecatalyticdomainisappendedtooneormorenoncatalyticcarbohydratebindingmodules(CBMs).CBMs,byconcentratingtheparentalenzymeattheirtargetpolysaccharide,increasethecapacityofthecatalyticmoduletobindthesubstrate,leadingtoapotentiationincatalysis.ClostridiumthermocellumhypotheticalproteinCthe_0821,definedhereasC.thermocellumMan5A,isamodularproteincomprisinganN-terminalsignalpeptide,afamily5glycosidehydrolase(GH5)catalyticmodule,afamily32CBM(CBM32),andaC-terminaltypeIdockerinmodule.RecentproteomicstudiesrevealedthatCthe_0821isoneofthemajorcellulosomalenzymeswhenC.thermocellumisculturedoncellulose.HereweshowthattheGH5catalyticmoduleofCthe_0821displaysendomannanaseactivity.C.thermocellumMan5Ahydrolyzessolublekonjacglucomannan,solublecarobgalactomannan,andinsolubleivorynutmannanbutdoesnotattackthehighlygalactosylatedmannanfromguargum,suggestingthattheenzymeprefersunsubstitutedβ-1,4-mannosidelinkages.TheCBM32ofC.thermocellumMan5Adisplaysapreferenceforthenonreducingendsofmannooligosaccharides,althoughtheproteinmoduleexhibitsmeasurableaffinityfortheterminiofβ-1,4-linkedglucooligosaccharidessuchascellobiose.CBM32potentiatestheactivityofC.thermocellumMan5Aagainstinsolublemannansbuthasnosignificanteffectonthecapacityoftheenzymetohydrolyzesolublegalactomannansandglucomannans.TheproductprofileofC.thermocellumMan5AisaffectedbythepresenceofCBM32.
Anon-modularendo-β-1,4-mannanasefromPseudomonasfluorescenssubspeciescellulosa.
Braithwaite,K.L.,Black,G.W.,Hazlewood,G.P.,Ali,B.R.S.&Gilbert,H.J.(1995).Biochem.J,305,1005-1010.
LinktoArticle
ReadAbstract
Pseudomonasfluorescenssubsp.cellulosawhenculturedinthepresenceofcarobgalactomannandegradedthepolysaccharide.Toisolategene(s)fromP.fluorescenssubsp.cellulosaencodingendo-β-1,4-mannanase(mannanase)activity,agenomiclibraryofPseudomonasDNA,constructedinlamBDaZAPII,wasscreenedformannanase-expressingclonesusingthedye-labelledsubstrate,azo-carobgalactomannan.Thenucleotidesequenceofthepseudomonadinsertfromamannanase-positiveclonerevealedasingleopenreadingframeof1257bpencodingaproteinofMr46,938.ThededucedN-terminalsequenceoftheputativepolypeptideconformedtoatypicalprokaryoticsignalpeptide.Truncatedderivativesofthemannanase,lacking54and16residuesfromtheN-andC-terminusrespectivelyofthematureformoftheenzyme,didnotexhibitcatalyticactivity.Inspectionoftheprimarystructureofthemannanasedidnotrevealanyobviouslinkersequencesorproteinmotifscharacteristicofthenon-catalyticdomainslocatedinotherPseudomonasplantcellwallhydrolases.Thesedataindicatethatthemannanaseisnon-modulator,comprisingasinglecatalyticdomain.ComparisonofthemannanasesequencewiththoseintheSWISSPROTdatabaserevealedgreatestsequencehomologywiththemannanasefromBacillussp.ThusthePseudomonasenzymebelongstoglycosylhydrolaseFamily26,afamilycontainingmannanasesandendoglucanases.Analysisofthesubstratespecificityofthemannanaseshowedthattheenzymehydrolysedmannanandgalactomannan,butdisplayedlittleactivitytowardsotherpolysaccharideslocatedintheplantcellwall.TheenzymehadapHoptimumofapprox.7.0,wasresistanttoproteolysisandhadanMrof46,000whenexpressedbyEscherichiacoli.
Restrictedaccessofproteinstomannanpolysaccharidesinintactplantcellwalls.
Marcus,S.E.,Blake,A.W.,Benians,T.A.S,Lee,K.J.,Poyser,C.,Donaldson,L.,Leroux,O.,Rogowski,A.,Petersen,H.L.,Boraston,A.,Gilbert,H.J.,Willats,W.G.T.&PaulKnox,J.(2010).ThePlantJournal,64(2),191-203.
LinktoArticle
ReadAbstract
Howthediversepolysaccharidespresentinplantcellwallsareassembledandinterlinkedintofunctionalcompositesisnotknownindetail.Here,usingtwonovelmonoclonalantibodiesandacarbohydrate-bindingmoduledirectedagainstthemannangroupofhemicellulosecellwallpolysaccharides,weshowthatmolecularrecognitionofmannanpolysaccharidespresentinintactcellwallsisseverelyrestricted.Insecondarycellwalls,mannanesterificationcanpreventproberecognitionofepitopes/ligands,anddetectionofmannansinprimarycellwallscanbeeffectivelyblockedbythepresenceofpectichomogalacturonan.Maskingbypectichomogalacturonanisshowntobeawidespreadphenomenoninparenchymasystems,andmaskedmannanwasfoundtobeafeatureofcellwallregionsatpitfields.Directfluorescenceimagingusingamannan-specificcarbohydrate-bindingmoduleandsequentialenzymetreatmentswithanendo-β-mannanaseconfirmedthepresenceofcrypticepitopesandthatthemaskingofprimarycellwallmannanbypectinisapotentialmechanismforcontrollingcellwallmicro-environments.
Acarbohydratebindingmoduleasadiversity‐carryingscaffold.
Gunnarsson,L.C.,Karlsson,E.N.,Albrekt,A.-S.,Andersson,M.,Holst,O.&Ohlin,M.(2004).ProteinEngineering,Design&Selection,17(3),213-221.
LinktoArticle
ReadAbstract
Thegrowingfieldofbiotechnologyisinconstantneedofbindingproteinswithnovelproperties.Notjustbindingspecificitiesandaffinitiesbutalsostructuralstabilityandproductivityareimportantcharacteristicsforthepurposeoflarge‐scaleapplications.Inordertofindsuchmolecules,librariesarecreatedbydiversifyingnaturallyoccurringbindingproteins,whichinthosecasesserveasscaffolds.Inthisstudy,weinvestigatedtheuseofathermostablecarbohydratebindingmodule,CBM4‐2,fromaxylanasefoundinRhodothermusmarinus,asadiversity‐carryingscaffold.Acombinatoriallibrarywascreatedbyintroducingrestrictedvariationat12positionsinthecarbohydratebindingsiteoftheCBM4‐2.Despitethesmallsizeofthelibrary(1.6×106clones),variantsspecifictowardsdifferentcarbohydratepolymers(birchwoodxylan,Avicelandivorynutmannan)aswellasaglycoprotein(humanIgG4)weresuccessfullyselectedfor,usingthephagedisplaymethod.Investigatedclonesshowedahighproductivity(onaverage69mgofpurifiedprotein/lshakeflaskculture)whenproducedinEscherichiacoliandtheywereallstablemoleculesdisplayingahighmeltingtransitiontemperature(75.7±5.3°C).AllourresultsdemonstratethattheCBM4‐2moleculeisasuitablescaffoldforcreatingvariantsusefulindifferentbiotechnologicalapplications.
Purificationandsomepropertiesofathermostableacidicendo‐β‐1,4‐D‐mannanasefromSclerotium(Athelia)rolfsii.
Sachslehner,A.&Haltrich,D.(1999).FEMSMicrobiologyLetters,177(1),47-55.
LinktoArticle
ReadAbstract
ThephytopathogenicfungusSclerotium(Athelia)rolfsiiformsonemajorendo-β-1,4-D-mannanase(EC3.2.1.78)undernon-inducedandderepressedconditions,i.e.afterdepletionofglucosewhichwasusedastheonlycarbohydratesubstrateforitscultivation.Thismannanasewaspurifiedtoelectrophoretichomogeneitybyammoniumsulfateprecipitation,hydrophobicinteractionchromatography,anionexchangechromatographyandgelfiltration.Theenzymeisaglycoproteinwithamolecularmassof46.5±2kDa(SDS-PAGE),anisoelectricpointof2.75,andapHoptimumof3.0–3.5.Theenzymeisespeciallystableintheacidicregionwithanexceptionalhalf-lifeofactivityof41daysatpH4.5and50°C.Itexertsactivityonβ-1,4-mannanfromivorynut,whichishydrolyzedmainlytomannobioseandmannotriose,aswellasonglucomannan,galactomannan,galactoglucomannan,andmannooligosaccharidesnotsmallerthanmannotetraose.Themainend-productsmannotrioseandtoalesserextentmannobioseinhibititsactivitymoderately.
X4modulesrepresentanewfamilyofcarbohydrate-bindingmodulesthatdisplaynovelproperties.
Bolam,D.N.,Xie,H.,Pell,G.,Hogg,D.,Galbraith,G.,Henrissat,B.&Gilbert,H.J.(2004).JournalofBiologicalChemistry,279(22),22953-22963.
LinktoArticle
ReadAbstract
Thehydrolysisoftheplantcellwallbymicrobialglycosidehydrolasesandesterasesistheprimarymechanismbywhichstoredorganiccarbonisutilizedinthebiosphere,andthustheseenzymesareofconsiderablebiologicalandindustrialimportance.Plantcellwall-degradingenzymesingeneraldisplayamodulararchitecturecomprisingcatalyticandnon-catalyticmodules.TheX4modulesinglycosidehydrolasesrepresentalargefamilyofnon-catalyticmoduleswhosefunctionisunknown.HereweshowthattheX4modulesfromaCellvibriojaponicusmannanase(Man5C)andarabinofuranosidase(Abf62A)bindtopolysaccharides,andthustheseproteinscompriseanewfamilyofcarbohydrate-bindingmodules(CBMs),designatedCBM35.TheMan5C-CBM35bindstogalactomannan,insolubleamorphousmannan,glucomannan,andmanno-oligosaccharidesbutdoesnotinteractwithcrystallinemannan,cellulose,cello-oligosaccharides,orotherpolysaccharidesderivedfromtheplantcellwall.Man5C-CBM35alsopotentiatesmannanaseactivityagainstinsolubleamorphousmannan.Abf62A-CBM35interactswithunsubstitutedoat-speltxylanbutnotsubstitutedformsofthehemicelluloseorxylo-oligosaccharides,andrequirescalciumforbinding.Thisisinsharpcontrasttootherxylan-bindingCBMs,whichinteractinacalcium-independentmannerwithbothxylo-oligosaccharidesanddecoratedxylans.
DigestionofsinglecrystalsofmannanIbyanendo‐mannanasefromTrichodermareesei.
Sabini,E.,Wilson,K.S.,Siika‐aho,M.,Boisset,C.&Chanzy,H.(2000).EuropeanJournalofBiochemistry,267(8),2340-2344.
LinktoArticle
ReadAbstract
TheenzymaticdegradationofsinglecrystalsofmannanIwiththecatalyticcoredomainofaβ-mannanase(EC3.2.1.78orMan5A)fromTrichodermareeseiwasinvestigatedbytransmissionelectronmicroscopyandelectrondiffraction.Theenzymeattacktookplaceattheedgeofthecrystalsandprogressedtowardstheircentres.Quiteremarkablythecrystallineintegrityofthecrystalswaspreservedalmosttotheendofthedigestionprocess.Thisbehaviourisconsistentwithanendo-mechanism,wheretheenzymeinteractswiththeaccessiblemannanchainslocatedatthecrystalperipheryandcleavesonemannanmoleculeatatime.Theendomodeofdigestionofthecrystalswasconfirmedbyananalysisofthesolubledegradationproducts.
DoescelluloseIIexistinnativealgacellwalls?CellulosestructureofDerbesiacellwallsstudiedwithSFG,IRandXRD.
Park,Y.B.,Kafle,K.,Lee,C.M.,Cosgrove,D.J.,&Kim,S.H.(2015).Cellulose,22(6),3531-3540.
LinktoArticle
ReadAbstract
Innature,algaeproducecelluloseIwhereallglucanchainsarealignedparallel.However,thepresenceofcelluloseIIwithanti-parallelglucanchainshasbeenreportedforcertainDerbesia(Chlorophyceaealgae)cellwalls;ifthisistrue,itwouldmeananewbiologicalprocessforsynthesizingcellulosethathasnotyetbeenrecognized.Toanswerthisquestion,weexaminedcellulosestructureinDerbesiacellwalls,intactaswellastreatedwithcelluloseisolationprocedures,usingsum-frequency-generationspectroscopy,infrared(IR)spectroscopyandX-raydiffraction(XRD).Derbesiawallscontainlargeamountsofmannanandsmallamountsofcrystallinecellulose.EvidenceforcelluloseIIintheintactcellwallswasnotfound,whereascelluloseIIinthetrifluoroaceticacid(TFA)treatedcellwallsamplesweredetectedbyIRandXRD.Acontrolexperimentconductedwithball-milledAvicelcellulosesamplesshowedthatcelluloseIIstructurecouldbeformedasaresultofTFAtreatmentanddryingofamorphouscellulose.ThesedatasuggestthatthecelluloseIIstructuredetectedintheTFA-treatedDerbesiagametophytewallsamplesismostlikelyduetoreorganizationofamorphouscelluloseduringthesamplepreparation.OurresultscontradictthepreviousreportofcelluloseIIinnativealgacellwalls.EvenifthecrystallinecelluloseIIexistsinintactDerbesiagametophytecellwalls,itsamountwouldbeverysmall(belowthedetectionlimit)andthusbiologicallyinsignificant.
PurificationandCharacterizationofaThermostableβ-mannanasefromBacillussubtilisBE-91:PotentialApplicationinInflammatoryDiseases.
Cheng,L.,Duan,S.,Feng,X.,Zheng,K.,Yang,Q.&Liu,Z.(2016).BioMedResearchInternational,ArticleID6380147.
LinktoArticle
ReadAbstract
β-mannanasehasshowncompellingbiologicalfunctionsbecauseofitsregulatoryrolesinmetabolism,inflammation,andoxidation.Thisstudyseparatedandpurifiedtheβ-mannanasefromBacillussubtilisBE-91,whichisapowerfulhemicellulose-degradingbacteriumusinga“two-step”methodcomprisingultrafiltrationandgelchromatography.Thepurifiedβ-mannanase(about28.2 kDa)showedhighspecificactivity(79,859.2 IU/mg).TheoptimumtemperatureandpHwere65°Cand6.0,respectively.Moreover,theenzymewashighlystableattemperaturesupto70°CandpH4.5-7.0.Theβ-mannanaseactivitywassignificantlyenhancedinthepresenceofMn+,Cu2+,Zn2+,Ca2+,Mg2+,andAl3+andstronglyinhibitedbyBa2+,andPb2+.KmandVmaxvaluesforlocustbeangumwere7.14 mg/mLand107.5 μmol/min/mLversus1.749 mg/mLand33.45 µmol/min/mLforKonjacglucomannan,respectively.Therefore,β-mannanasepurifiedbythisworkshowsstabilityathightemperaturesandinweaklyacidicorneutralenvironments.Basedonsuchdata,theβ-mannanasewillhavepotentialapplicationsasadietarysupplementintreatmentofinflammatoryprocesses.
InfluenceofStereochemistryonRelativeReactivitiesofGlucosylandMannosylResiduesinKonjacGlucomannan(KGM).
Zhang,Q.&Mischnick,P.(2017).MacromolecularChemistryandPhysics,218(17),1700119.
LinktoArticle
ReadAbstract
MethylationinwaterwithNaOH/MeIisappliedtostudytheinfluenceofthestereochemistryonrelativereactivitiesofD-mannosyl(M)comparedtoD-glucosyl(G)unitsinkonjacglucomannan(KGM).ThepHiskeptconstantat13.6overthecourseofthereactionandaliquotsareremovedaftervarioustimeintervals.MethyldistributioninGandMresiduesisdeterminedafterperethylation,hydrolysis,andconversiontoO-ethyl-O-methyl-alditolacetates.TheorderofrelativerateconstantsdeterminedfortheO-methylKonjacglucomannans(M-KGMs)indegreeofsubstitution(DS)range0.3–0.8isG-k6>M-k6>G-k2≈M-k2>M-k3>G-k3.OligosaccharidesobtainedbypartialhydrolysisafterfullprotectionofM-KGMwithMeI-d3arelabeledwithm-amino-benzoicacidandmeasuredbyliquidchromatography–electrosprayionization–massspectrometry.DS/DPprofilesareinfullagreementwithrandomdistributionofmethylgroups.ThermalpropertiesofM-KGMsareanalyzedbydifferentialscanningcalorimetryandthermogravimetricanalysis.DecompositiontemperatureincreaseswithDS,whilethetemperatureofanendothermicchangedecreases.
GeneticandfunctionalcharacterizationofanovelGH10endo-β-1,4-xylanasewitharicin-typeβ-trefoildomain-likedomainfromLuteimicrobiumxylanilyticumHY-24.(2017).
Kim,D.Y.,Lee,S.H.,Lee,M.J.,Cho,H.Y.,Lee,J.S.,Rhee,Y.H.,Shin,D.H.,SonK.H.&Park,H.Y.InternationalJournalofBiologicalMacromolecules,InPress.
LinktoArticle
ReadAbstract
Thegene(1488-bp)encodinganovelGH10endo-β-1,4-xylanase(XylM)consistingofanN-terminalcatalyticGH10domainandaC-terminalricin-typeβ-trefoillectindomain-like(RICIN)domainwasidentifiedfromLuteimicrobiumxylanilyticumHY-24.TheGH10domainofXylMwas72%identicaltothatofMicromonosporalupineendo-β-1,4-xylanaseandtheRICINdomainwas67%identicaltothatofActinospicarobiniaehypotheticalprotein.Therecombinantenzyme(rXylM:49kDa)exhibitedmaximumactivitytowardbeechwoodxylanat65°CandpH6.0,whiletheoptimumtemperatureandpHofitsC-terminaltruncatedmutant(rXylM△RICIN:35kDa)were45°Cand5.0,respectively.Afterpre-incubationof1hat60°C,rXylMretainedover80%ofitsinitialactivity,butthethermostabilityofrXylM△RICINwassharplydecreasedattemperaturesexceeding40°C.Thespecificactivity(254.1Umg-1)ofrXylMtowardoatspeltsxylanwas3.4-foldhigherthanthat(74.8Umg-1)ofrXylM△RICINwhenthesamesubstratewasused.rXylMdisplayedsuperiorbindingcapacitiestoligninandinsolublepolysaccharidescomparedtorXylM△RICIN.Enzymatichydrolysisofβ-1,4-D-xylooligosaccharides(X3-X6)andbirchwoodxylanyieldedX3asthemajorproduct.TheresultssuggestthattheRICINdomaininXylMmightplayanimportantroleinsubstrate-bindingandbiocatalysis.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们