Megazyme/果胶半乳聚糖(马铃薯)/P-PGAPT/4克
商品编号:
P-PGAPT
品牌:
Megazyme INC
市场价:
¥2712.00
美元价:
1627.20
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityPecticGalactan(Potato)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Highlypurified,water-solublepolysaccharide,extractedwithalkalifrompotatofiber.Gal: Ara: Rha: GalUA= 74: 0.1: 11.4: 10
Roleof(1,3)(1,4)β-glucanincellwalls:Interactionwithcellulose.
Kiemle,S.N.,Zhang,X.,Esker,A.R.,Toriz,G.,Gatenholm,P.&Cosgrove,D.J.(2014).Biomacromolecules,15(5),1727-1736.
LinktoArticle
ReadAbstract
(1,3)(1,4)-β-D-Glucan(mixed-linkageglucanorMLG),acharacteristichemicelluloseinprimarycellwallsofgrasses,wasinvestigatedtodeterminebothitsroleincellwallsanditsinteractionwithcelluloseandothercellwallpolysaccharidesinvitro.BindingisothermsshowedthatMLGadsorptionontomicrocrystallinecelluloseisslow,irreversIBLe,andtemperature-dependent.MeasurementsusingquartzcrystalmicrobalancewithdissipationmonitoringshowedthatMLGadsorbedirreversiblyontoamorphousregeneratedcellulose,formingathickhydrogel.Oligosaccharideprofilingusingendo-(1,3)(1,4)-β-glucanaseindicatedthattherewasnodifferenceinthefrequencyanddistributionof(1,3)and(1,4)linksinboundandunboundMLG.ThebindingofMLGtocellulosewasreducedifthecellulosesampleswerefirsttreatedwithcertaincellwallpolysaccharides,suchasxyloglucanandglucuronoarABInoxylan.ThetetheringfunctionofMLGincellwallswastestedbyapplyingendo-(1,3)(1,4)-β-glucanasetowallsamplesinaconstantforceextensometer.Cellwallextensionwasnotinduced,whichindicatesthatenzyme-accessibleMLGdoesnottethercellulosefibrilsintoaload-bearingnetwork.
ArhamnogalacturonanlyaseintheClostridiumcellulolyticumcellulosome.
Pagès,S.,Valette,O.,ABDou,L.,Bélaïch,A.&Bélaïch,J.P.(2003).JournalofBacteriology,185(16),4727-4733.
LinktoArticle
ReadAbstract
Clostridiumcellulolyticumsecreteslargemultienzymaticcomplexeswithplantcellwall-degrADIngactivitiesnamedcellulosomes.Mostofthegenesencodingcellulosomalcomponentsarelocatedinalargegenecluster:cipC-cel48F-cel8C-cel9G-cel9E-orfX-cel9H-cel9J-man5K-cel9M.Downstreamofthecel9Mgene,anewopenreadingframewasdiscoveredandnamedrgl11Y.Aminoacidsequenceanalysisindicatesthatthisgeneencodesamultidomainpectinase,Rgl11Y,containinganN-terminalsignalsequence,acatalyticdomainbelongingtofamily11ofthepolysaccharidelyases,andaC-terminaldockerindomain.ThepresentreportdescribesthebiochemicalcharacterizationofarecombinantformofRgl11Y.Rgl11Ycleavestheα-L-Rha>i>p-(1→4)-α-D-GalpAglycosidicbondinthebackboneofrhamnogalacturonanI(RGI)viaaβ-eliminationmechanism.Itsspecificactivityonpotatopecticgalactanandrhamnogalacturonanwasfoundtobe28and3.6IU/mg,respectively,indicatingthatRgl11YrequiresgalactandecorationoftheRGIbackbone.TheoptimalpHofRgl11Yis8.5andcalciumisrequiredforitsactivity.Rgl11YwasshowntobeincorporatedintheC.cellulolyticumcellulosomethroughatypicalcohesin-dockerininteraction.Rgl11YfromC.cellulolyticumisthefirstcellulosomalrhamnogalacturonasecharacterized.
TheInhibitoryEffectsofaRhamnogalacturonanΙ(RG-I)DomainfromGinsengPectinonGalectin-3andItsStructure-ActivityRelationship.
Gao,X.,Zhi,Y.,Sun,L.,Peng,X.,Zhang,T.,Xue,H.,Tai,G.&Zhou,Y.(2013).JournalofBIOLOGicalChemistry,288(47),33953-33965.
LinktoArticle
ReadAbstract
Pectinhasbeenshowntoinhibittheactionsofgalectin-3,aβ-galactoside-bindingproteinassociatedwithcancerprogression.Thestructuralfeaturesofpectininvolvedinthisactivityremainunclear.Weinvestigatedtheeffectsofdifferentginsengpectinsongalectin-3action.TherhamnogalacturonanI-richpectinfragment,RG-I-4,potentlyinhibitedgalectin-3-mediatedhemagglutination,cancercelladhesionandhomotypicaggregation,andbindingofgalectin-3toT-cells.RG-I-4specificallyboundtothecarbohydraterecognitiondomainofgalectin-3withadissociationconstantof22.2nM,whichwasdeterminedbysurfaceplasmonresonanceanalysis.Thestructure-activityrelationshipofRG-I-4wasinvestigatedbymodifyingthestructurethroughvariousenzymaticandchemicalmethodsfollowedbyactivitytests.Theresultsshowedthat(a)galactansidechainswereessentialtotheactivityofRG-I-4,whereasarabinansidechainspositivelyornegativelyregulatedtheactivitydependingontheirlocationwithintheRG-I-4molecule.(b)Theactivityofgalactanchainwasproportionaltoitslengthupto4Galresiduesandlargelyunchangedthereafter.(c)ThemajorityofgalactansidechainsinRG-I-4wereshortwithlowactivities.(d)ThehighactivityofRG-I-4resultedfromthecooperativeactionofthesesidechains.(e)ThebackboneofthemoleculewasveryimportanttoRG-I-4activity,possiblybymaintainingastructuralconformationofthewholemolecule.(f)Theisolatedbackbonecouldbindgalectin-3,whichwasinsensitivetolactosetreatment.ThenoveldiscoverythatthesidechainsandbackboneplaydistinctrolesinregulatingRG-I-4activityisvaluableforproducinghighlyactivepectin-basedgalectin-3inhibitors.
Family6carbohydrate‐bindingmodulesdisplaymultipleβ1,3‐linkedglucan‐specificbindinginterfaces
Correia,M.A.S.,Pires,V.M.R.,Gilbert,H.J.,Bolam,D.N.,Fernandes,V.O.,Alves,V.D.,Prates,J.A.M.,Ferreira,L.M.A.&Fontes,C.M.G.(2009).FEMSMicrobiologyLetters,300(1),48-57.
LinktoArticle
ReadAbstract
Noncatalyticcarbohydrate-bindingmodules(CBMs),whicharefoundinavarietyofcarbohydrate-degradingenzymes,havebeengroupedintosequence-basedfamilies.CBMs,byrecruitingtheirappendedenzymesontothesurfaceofthetargetsubstrate,potentiatecatalysisparticularlyagainstinsolublesubstrates.Family6CBMs(CBM6s)displayunusualpropertiesinthattheypresenttwopotentialligand-bindingsitestermedcleftsAandB,respectively.CleftBislocatedontheconcavesurfaceoftheβ-sandwichfoldwhilecleftA,themorecommonbindingsite,isformedbytheloopsthatconnecttheinnerandtheouterβ-sheets.Here,wereportthebiochemicalpropertiesofCBM6-1fromCellvibriomixtusCmCel5A.ThedatarevealthatCBM6-1specificallyrecognizesβ1,3-glucansthroughresidueslocatedbothincleftAandincleftB.Incontrast,apreviousreportshowedthataCBM6derivedfromaBacillushaloduranslaminarinasebindstoβ1,3-glucansonlyincleftA.Thesestudiesrevealadifferentmechanismbywhichahighlyconservedproteinplatformcanrecognizeβ1,3-glucans.
BiochemicalandstructuralcharacterizationoftheintracellularmannanaseAaManAofAlicyclobacillusacidocaldariusrevealsanovelglycosidehydrolasefamilybelongingtoclanGH-A.
Zhang,Y.,Ju,J.,Peng,H.,Gao,F.,Zhou,C.,Zeng,Y.,Xue,Y.,Li,Y.,Henrissat,B.,Gao,G.F.&Ma,Y.(2008).JournalofBiologicalChemistry,283(46),31551-31558.
LinktoArticle
ReadAbstract
AnintracellularmannanasewasidentifiedfromtheThermoacidophileAlicyclobacillusacidocaldariusTc-12-31.Thisenzymeisparticularlyinteresting,becauseitshowsnosignificantsequencesimilaritytoanyknownglycosidehydrolase.Genecloning,biochemicalcharacterization,andstructuralstudiesofthisnovelmannanasearereportedinthispaper.Thegeneconsistsof963bpandencodesa320-aminoacidprotein,AaManA.Basedonitssubstratespecificityandproductprofile,AaManAisclassifiedasanendo-β-1,4-mannanasethatiscapableoftransglycosylation.Kineticanalysisstudiesrevealedthattheenzymerequiredatleastfivesubsitesforefficienthydrolysis.Thecrystalstructureat1.9ÅresolutionshowedthatAaManAadopteda(β/α)8-barrelfold.Twocatalyticresidueswereidentified:Glu151attheCterminusofβ-standβ4andGlu231attheCterminusofβ7.Basedonthestructureoftheenzymeandevidenceofitstransglycosylationactivity,AaManAisplacedinclanGH-A.SuperpositioningofitsstructurewiththatofotherclanGH-AenzymesrevealedthatsixoftheeightGH-AkeyresidueswerefunctionallyconservedinAaManA,withtheexceptionsbeingresiduesThr95andCys150.WeproposeamodelofsubstratebindinginAaManAinwhichGlu282interactswiththeaxialOH-C(2)in–2subsites.Basedonsequencecomparisons,theenzymewasassignedtoanewglycosidehydrolasefamily(GH113)thatbelongstoclanGH-A.
Modellingofxyloglucan,pectinsandpecticsidechainsbindingontocellulosemicrofibrils.
Zykwinska,A.,Thibault,J.F.&Ralet,M.C.(2008).CarbohydratePolymers,74(1),23-30.
LinktoArticle
ReadAbstract
Bindingmodellingoftamarindandpeaxyloglucans,sugarbeetandpotatopectins,andpecticsidechains(branchedarabinan,debranchedarabinan,galactan)ontomicrocrystallineAvicelcelluloseandprimarycellwall(PCW)cellulosewasperformed.Themostcommonlyusedbindingmodels,namelytheLangmuir,theFreundlichandtheScatchardmodels,wereappliedtothedata.ItappearedthattheFreundlichmodelwasmoreappropriatetodescribethebindingofallthepolysaccharidesusedinthisstudy.TheheterogeneityindexcalculatedfromtheslopeofFreundlichisothermshighlightsanimportantheterogeneityofAvicelandPCWcellulosesurfaces,inagreementwiththeScatchardrepresentation.
Evidenceforsynergybetweenfamily2bcarbohydratebindingmodulesinCellulomonasfimixylanase11A.
Bolam,D.N.,Xie,H.,White,P.,Simpson,P.J.,Hancock,S.M.,Williamson,M.P.&Gilbert,H.J.(2001).Biochemistry,40(8),2468-2477.
LinktoArticle
ReadAbstract
Glycosidehydrolasesoftencontainmultiplecopiesofnoncatalyticcarbohydratebindingmodules(CBMs)fromthesameordifferentfamilies.Currently,thefunctionalimportanceofthiscomplexmoleculararchitectureisunclear.ToinvestigatetheroleofmultipleCBMsinplantcellwallhydrolases,wehavedeterminedthepolysaccharidebindingpropertiesofwildtypeandvariousderivativesofCellulomonasfimixylanase11A(CfXyn11A).Thisprotein,whichbindstobothcelluloseandxylan,containstwofamily2bCBMsthatexhibit70%sequenceidentity,oneinternal(CBM2b-1),whichhaspreviouslybeenshowntobindspecificallytoxylanandtheotherattheC-terminus(CBM2b-2).BiochemicalcharacterizationofCBM2b-2showedthatthemoduleboundtoinsolubleandsolubleoatspeltxylanandxylohexaosewithKavaluesof5.6×104,1.2×104,and4.8×103M-1,respectively,butexhibitedextremelyweakaffinityforcellohexaose(<>2M-1),anditsinteractionwithinsolublecellulosewastooweaktoquantify.TheCBMdidnotinteractwithsolubleformsofotherplantcellwallpolysaccharides.Thethree-dimensionalstructureofCBM2b-2wasdeterminedbyNMRspectroscopy.Themodulehasatwisted“β-sandwich”architecture,andthetwosurfaceexposedtryptophans,Trp570andTrp602,whichareinaperpendicularorientationwitheachother,wereshowntobeessentialforligandbinding.Inaddition,changingArg573toglycinealteredthepolysaccharidebindingspecificityofthemodulefromxylantocellulose.ThesedatademonstratethatthebiochemicalpropertiesandtertiarystructureofCBM2b-2andCBM2b-1areextremelysimilar.WhenCBM2b-1andCBM2b-2wereincorporatedintoasinglepolypeptidechain,eitherinthefull-lengthenzymeoranartificialconstructcomprisingbothCBM2bscovalentlyjoinedviaaflexiblelinker,therewasanapproximate18−20-foldincreaseintheaffinityoftheproteinforsolubleandinsolublexylan,ascomparedtotheindividualmodules,andameasurableinteractionwithinsolubleacid-swollencellulose,althoughtheKa(6.0×104M-1)wasstillmuchlowerthanforinsolublexylan(Ka=1.0×106M-1).Thesedatademonstratethatthetwofamily2bCBMsofCfXyn11Aactinsynergytobindacidswollencelluloseandxylan.Weproposethattheincreasedaffinityofglycosidehydrolasesforpolysaccharides,throughthesynergisticinteractionsofCBMs,providesanexplanationfortheduplicationofCBMsfromthesamefamilyinsomeprokaryoticcellulasesandxylanases.
Invitrobiosynthesisof1,4-β-galactanattachedtoapectin–xyloglucancomplexinpea.
Abdel-Massih,R.M.,Baydoun,E.A.H.,&Brett,C.T.(2003).Planta,216(3),502-511.
LinktoArticle
ReadAbstract
Particulateenzymepreparationswerepreparedfrometiolatedpea(PisumsativumL.)epicotylsandusedtoassayfor1,4-β-galactansynthaseusingUDP-[U-14C]galactose.Optimumconditionsfor1,4-β-galactansynthesisweredetermined.Theenzymeproductswerecharacterizedbyselectiveenzymicdegradation,gelpermeationchromatographyandanion-exchangechromatography.Evidencewasobtainedfortheformationof1,4-β-galactanchainattachedtoapecticbackbonecontainingbothpolygalacturonicacidandrhamnogalacturonanI.Theresultsalsoindicatedthatpartorallofthisnascentpectinwaspresentasacomplexwithxyloglucan.
PrioritizationofPolysaccharideUtilizationandControlofRegulatorActivationinBacteroidesthetaiotaomicron.
Schwalm,N.D.,Townsend,G.E.&Groisman,E.A.(2016).MolecularMicrobiology,104(1),32-45.
LinktoArticle
ReadAbstract
Bacteroidesthetaiotaomicronisahumangutsymbioticbacteriumthatutilizesamyriadofhostdietaryandmucosalpolysaccharides.Theproteinsresponsiblefortheuptakeandbreakdownofmanyofthesepolysaccharidesaretranscriptionallyregulatedbyhybridtwo-componentsystems(HTCSs).Thesesystemsconsistofasinglepolypeptideharboringthedomainsofsensorkinasesandresponseregulators,andthus,arethoughttoautophosphorylateinresponsetospecificsignals.WenowreportthattheHTCSBT0366isphosphorylatedinvivowhenB.thetaiotaomicronexperiencestheBT0366inducerarabinanbutnotwhengrowninthepresenceofglucose.BT0366phosphorylationandtranscriptionofBT0366-activatedgenesrequirestheconservedpredictedsitesofphosphorylationinBT0366.Whenchondroitinsulfateisaddedtoarabinan-containingcultures,BT0366phosphorylationandtranscriptionofBT0366-activatedgenesisinhibitedandthebacteriumexhibitsdiauxicgrowth.Whereastwentyadditionalcombinationsofpolysaccharidesalsogiverisetodiauxicgrowth,othercombinationsresultinsynergisticorunalteredgrowthrelativetobacteriaexperiencingasinglepolysaccharide.ThedifferentstrategiesemployedbyB.thetaiotaomicronwhenfacedwithmultiplepolysaccharidesmayaiditscompetitivenessinthemammaliangut.
ReciprocalPrioritizationtoDietaryGlycansbyGutBacteriainaCompetitiveEnvironmentPromotesStableCoexistence.
Tuncil,Y.E.,Xiao,Y.,Porter,N.T.,Reuhs,B.L.,Martens,E.C.&Hamaker,B.R.(2017).mBio,8(5),e01068-17.
LinktoArticle
ReadAbstract
Whenpresentedwithnutrientmixtures,severalhumangutBacteroidesspeciesexhibithierarchicalutilizationofglycansthroughaphenomenonthatresemblescataboliterepression.However,itisunclearhowcloselytheseobservedphysiologicalchanges,oftenmeasuredbyalteredtranscriptionofglycanutilizationgenes,mirroractualglycandepletion.Tounderstandtheglycanprioritizationstrategiesoftwocloselyrelatedhumangutsymbionts,BacteroidesovatusandBacteroidesthetaiotaomicron,weperformedaseriesoftimecourseassaysinwhichbothspecieswereindividuallygrowninamediumwithsixdifferentglycansthatbothspeciescandegrade.Disappearanceofthesubstratesandtranscriptionofthecorrespondingpolysaccharideutilizationloci(PULs)weremeasured.Eachspeciesutilizedsomeglycansbeforeothers,butwithdifferentprioritiesperspecies,providinginsightintospecies-specifichierarchicalpreferences.Ingeneral,thepresenceofhighlyprioritizedglycansrepressedtranscriptionofgenesinvolvedinutilizinglower-prioritynutrients.However,transcriptionalsensitivitytosomeglycansvariedrelativetotheresidualconcentrationinthemedium,withsomePULsthattargethigh-prioritysubstratesremaininghighlyexpressedevenaftertheirtargetglycanhadbeenmostlydepleted.Coculturingoftheseorganismsinthesamemixtureshowedthatthehierarchicalordersgenerallyremainedthesame,promotingstablecoexistence.Polymerlengthwasfoundtobeacontributingfactorforglycanutilization,therebyaffectingitsplaceinthehierarchy.OurfindingsnotonlyelucidatehowB.ovatusandB.thetaiotaomicronstrategicallyaccessglycanstomaintaincoexistencebutalsosupporttheprioritizationofcarbohydrateutilizationbasedoncarbohydratestructure,advancingourunderstandingoftherelationshipsbetweendietandthegutmicrobiome.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们