巨酶/鼠李糖乳糖醛酸(大豆)/P-RHAGN/5克
商品编号:
P-RHAGN
品牌:
Megazyme INC
市场价:
¥2976.00
美元价:
1785.60
产品分类:
其他试剂
公司分类:
Other_reagents
联系Q Q:
3392242852
电话号码:
4000-520-616
电子邮箱:
info@ebiomall.com
商品介绍
HighpurityRhamnogalacturonan(SoyBean)foruseinresearch,biochemicalenzymeassaysandinvitrodiagnosticanalysis.
Preparedfromsoybeanpectin.Potentialsubstratefortheassayofrhamnogalacturonase.
Arevisedarchitectureofprimarycellwallsbasedonbiomechanicalchangesinducedbysubstrate-specificendoglucanases.
Park,Y.B.&Cosgrove,D.J.(2012).PlantPhysiology,158(4),1933-1943.
LinktoArticle
ReadAbstract
Xyloglucaniswidelybelievedtofunctionasatetherbetweencellulosemicrofibrilsintheprimarycellwall,limitingcellenlargementbyrestrictingtheABIlityofmicrofibrilstoseparatelaterally.Totestthebiomechanicalpredictionsofthis“tetherednetwork”model,weassessedtheabilityofcucumber(Cucumissativus)hypocotylwallstoundergocreep(long-term,irreversIBLeextension)inresponsetothreefamily-12endo-β-1,4-glucanasesthatcanspecificallyhydrolyzexyloglucan,cellulose,orboth.Xyloglucan-specificendoglucanase(XEGfromAspergillusaculeatus)failedtoinducecellwallcreep,whereasanendoglucanasethathydrolyzesbothxyloglucanandcellulose(Cel12AfromHypocreajecorina)inducedahighcreeprate.Acellulose-specificendoglucanase(CEGfromAspergillusniger)didnotcausecellwallcreep,eitherbyitselforincombinationwithXEG.Testswithadditionalenzymes,includingafamily-5endoglucanase,confirmedtheconclusionthattocausecreep,endoglucanasesmustcutbothxyloglucanandcellulose.Similarresultswereobtainedwithmeasurementsofelasticandplasticcompliance.BothXEGandCel12Ahydrolyzedxyloglucaninintactwalls,butCel12AcouldhydrolyzeaminorxyloglucancompartmentrecalcitranttoXEGdigestion.XyloglucaninvolvementintheseenzymeresponseswasconfirmedbyexperimentswithArabidopsis(Arabidopsisthaliana)hypocotyls,whereCel12Ainducedcreepinwild-typebutnotinxyloglucan-deficient(xxt1/xxt2)walls.Ourresultsareincompatiblewiththecommondepictionofxyloglucanasaload-bearingtetherspanningthe20-to40-nmspacingbetweencellulosemicrofibrils,buttheydoimplicateaminorxyloglucancomponentinwallmechanics.Thestructurallyimportantxyloglucanmaybelocatedinlimitedregionsoftightcontactbetweenmicrofibrils.
Real-timeimagingofcellulosereorientationduringcellwallexpansioninArabidopsisroots.
Anderson,C.T.,Carroll,A.,Akhmetova,L.&Somerville,C.(2010).PlantPhysiology,152(2),787-796.
LinktoArticle
ReadAbstract
Celluloseformsthemajorload-bearingnetworkoftheplantcellwall,whichsimultaneouslyprotectsthecellanddirectsitsgrowth.Althoughtheprocessofcellulosesynthesishasbeenobserved,littleisknownaboutthebehaviorofcelluloseinthewallaftersynthesis.UsingPontamineFastScarlet4B,adyethatfluorescespreferentiallyinthepresenceofcelluloseandhasexcitationandemissionwavelengthssuitableforconfocalmicroscopy,weimagedthearchitectureanddynamicsofcelluloseinthecellwallsofexpandingrootcells.WefoundthatcelluloseexistsinArabidopsis(Arabidopsisthaliana)cellwallsinlargefibrillarbundlesthatvaryinorientation.Duringanisotropicwallexpansioninwild-typeplants,weobservedthatthesecellulosebundlesrotateinatransversetolongitudinaldirection.Wealsofoundthatcelluloseorganizationissignificantlyalteredinmutantslackingeitheracellulosesynthasesubunitortwoxyloglucanxylosyltransferaseisoforms.Ourresultssupportamodelinwhichcelluloseisdepositedtransverselytoaccommodatelongitudinalcellexpansionandreorientedduringexpansiontogenerateacellwallthatisfortifiedagainststrainfromanydirection.
X4modulesrepresentanewfamilyofcarbohydrate-bindingmodulesthatdisplaynovelproperties.
Bolam,D.N.,Xie,H.,Pell,G.,Hogg,D.,Galbraith,G.,Henrissat,B.&Gilbert,H.J.(2004).JournalofBIOLOGicalChemistry,279(22),22953-22963.
LinktoArticle
ReadAbstract
Thehydrolysisoftheplantcellwallbymicrobialglycosidehydrolasesandesterasesistheprimarymechanismbywhichstoredorganiccarbonisutilizedinthebiosphere,andthustheseenzymesareofconsiderablebiologicalandindustrialimportance.Plantcellwall-degrADIngenzymesingeneraldisplayamodulararchitecturecomprisingcatalyticandnon-catalyticmodules.TheX4modulesinglycosidehydrolasesrepresentalargefamilyofnon-catalyticmoduleswhosefunctionisunknown.HereweshowthattheX4modulesfromaCellvibriojaponicusmannanase(Man5C)andarabinofuranosidase(Abf62A)bindtopolysaccharides,andthustheseproteinscompriseanewfamilyofcarbohydrate-bindingmodules(CBMs),designatedCBM35.TheMan5C-CBM35bindstogalactomannan,insolubleamorphousmannan,glucomannan,andmanno-oligosaccharidesbutdoesnotinteractwithcrystallinemannan,cellulose,cello-oligosaccharides,orotherpolysaccharidesderivedfromtheplantcellwall.Man5C-CBM35alsopotentiatesmannanaseactivityagainstinsolubleamorphousmannan.Abf62A-CBM35interactswithunsubstitutedoat-speltxylanbutnotsubstitutedformsofthehemicelluloseorxylo-oligosaccharides,andrequirescalciumforbinding.Thisisinsharpcontrasttootherxylan-bindingCBMs,whichinteractinacalcium-independentmannerwithbothxylo-oligosaccharidesanddecoratedxylans.
Family42carbohydrate-bindingmodulesdisplaymultiplearabinoxylan-bindinginterfacespresentingdifferentligandaffinities.
Ribeiro,T.,Santos-Silva,T.,Alves,V.D.,Dias,F.M.V.,Luís,A.S.,Prates,J.A.M.,Ferraira,L.M.A.,Romao,M.J.&Fontes,C.M.G.A.(2010).BiochimicaetBiophysicaActa(BBA)-ProteinsandProteomics,1804(10),2054-2062.
LinktoArticle
ReadAbstract
Enzymesthatdegradeplantcellwallpolysaccharidesdisplayamodulararchitecturecomprisingacatalyticdomainboundtooneormorenon-catalyticcarbohydrate-bindingmodules(CBMs).CBMsdisplayconsiderablevariationinprimarystructureandaregroupedinto59sequence-basedfamiliesorganizedintheCarbohydrate-ActiveenZYme(CAZy)database.HerewereportthecrystalstructureofCtCBM42Atogetherwiththebiochemicalcharacterizationoftwoothermembersoffamily42CBMsfromClostridiumThermocellum.CtCBM42A,CtCBM42BandCtCBM42Cbindspecificallytothearabinoseside-chainsofarabinoxylansandarabinan,suggestingthatvariouscellulosomalcomponentsaretargetedtotheseregionsoftheplantcellwall.ThestructureofCtCBM42Adisplaysabeta-trefoilfold,whichcomprises3sub-domainsdesignatedasα,βandγ.Eachoneofthethreesub-domainspresentsaputativecarbohydrate-bindingpocketwhereanaspartateresiduelocatedinacentralpositiondominatesligandrecognition.Intriguingly,theγsub-domainofCtCBM42Aispivotalforarabinoxylanbinding,whiletheconcertedactionofβandγsub-domainsofCtCBM42BandCtCBM42Cisapparentlyrequiredforligandsequestration.Thus,thisworkrevealsthatthebindingmechanismofCBM42membersisincontrastwiththatofhomologousCBM13swhererecognitionofcomplexpolysaccharidesresultsfromthecooperativeactionofthreeproteinsub-domainspresentingsimilaraffinities.
IdentificationofaGH62α-L-arabinofuranosidasespecificforarabinoxylanproducedbyPenicilliumchrysogenum.
Sakamoto,T.,Ogura,A.,Inui,M.,Tokuda,S.,Hosokawa,S.,Ihara,H.&Kasai,N.(2011).AppliedMicrobiologyandBiotechnology,90(1),137-146.
LinktoArticle
ReadAbstract
Anarabinoxylanarabinofuranohydrolase(AXS5)waspurifiedfromtheculturefiltrateofPenicilliumchrysogenum31B.ACDNAencodingAXS5(axs5)wasisolatedbyinvitrocloningusingtheN-terminalaminoacidsequenceofthenativeenzymeasastartingpoint.Thededucedaminoacidsequenceoftheaxs5genehashighsimilaritieswiththoseofarabinoxylanarabinofuranohydrolasesofAspergillusniger,Aspergillustubingensis,andAspergillussojae.Modulesequenceanalysisrevealedthata“Glyco_hydro_62”waspresentatposition28–299ofAXS5.Thisisafamilyofα-L-arabinofuranosidaseswhichareallmembersofglycosidehydrolasefamily62.RecombinantAXS5(rAXS5)expressedinEscherichiacoliwashighlyactiveonarabinoxylanbutnotonbranchedsugarbeetarabinan.1H-NMRanalysisrevealedthattherAXS5cleavedarabinosylside-chainslinkedtoC-2andC-3ofsingle-substitutedxyloseresiduesinarabinoxylan.Semi-quantitativeRT-PCRanalysisindicatedthatexpressionoftheaxs5geneinP.chrysogenum31BwasstronglyinducedbyaddingD-xyloseandarabinoxylantotheculturemedium.Moreover,twobindingsitesofXlnR,atranscriptionalactivatorthatregulatestheexpressionofthegenesencodingxylanolyticenzymes,arepresentintheupstreamregionoftheaxs5gene.TheseresultssuggestthatAXS5isinvolvedinxylandegradation.
Endo-1,5-α-L-arabinanasefromaSubseafloorBacillussubtilis:Purification,CharacterizationandNucleotideSequenceofItsGene.
Fukada,Y.,Koide,O.,Miura,T.,Kobayashi,T.,Inoue,A.,&Horikoshi,K.(2011).Journalofappliedglycoscience,58(2),61-66.
LinktoArticle
ReadAbstract
Fourarabinan-degradingenzymesareproducedbyBacillussubtilisJAMA-3-6,whichwasisolatedfromasubseafloorsedimentcorefrom0.5mbelowseaflooratawaterdepthof1,180mofftheShimokitaPeninsulainJapan.Oneoftheenzymes(AbnAF25)waspurifiedfromaculturebroth.Themolecularmassoftheenzymewasaround28kDaasjudgedbySDS-polyacrylamidegelelectrophoresis.TheoptimalpHandtemperaturewerepH6.3and60°Cinphosphatebuffer.AbnAF25degradedwelldebranchedarabinan,lineararabinan,andarabino-oligosaccharaides,butnotarabinoxylan,arabinogalactanorp-nitrophenyl-α-L-arabinofuranoside,whichclassifiestheenzymeasanendo-1,5-α-L-arabinanase.Theendproductsfromlineararabinanweremainlyarabinose,arabinobioseandarabinotriose.ThegeneforAbnAF25wasclonedandsequenced.ThededucedaminoacidsequenceoftheenzymerevealedthehighestsimilaritytothearabinanaseofB.amyloliquefacienswith83%identity.AsAbnAF25didnotshowthedefinitecharacterizationofasubseafloorenzyme,strainJAMA-3-6seemstobeprobablydroppedorco-sedimentedwithasoilcomponent.
AnovelGH43α-L-arabinofuranosidaseofPenicilliumchrysogenumthatpreferentiallydegradessingle-substitutedarabinosylsidechainsinarabinan.
Shinozaki,A.,Kawakami,T.,Hosokawa,S.&Sakamoto,T.(2014).EnzymeandMicrobialTechnology,58,80-86.
LinktoArticle
ReadAbstract
Wepreviouslydescribedthreeα-L-arabinofuranosidases(ABFs)secretedbyPenicilliumchrysogenum31B.Here,wepurifiedafourthABF,termedPcABF43A,fromtheculturefiltrate.Themolecularmassoftheenzymewasestimatedtobe31kDa.PcABF43Ahadthehighestactivityat35°CandataroundpH5.TheenzymeactivitywasstrongonsugarbeetL-arabinanbutweakondebranchedarabinanandarabinoxylan.Lowmolecular-masssubstratessuchasp-nitrophenylα-L-arabinofuranoside,α-1,5-L-arabinooligosaccharides,andbranchedarabinotriosewerehighlyresistanttotheactionofPcABF43A.1H-NMRanalysisrevealedthatPcABF43AhydrolyzedarabinosylsidechainslinkedtoC-2orC-3ofsingle-substitutedarabinoseresiduesinL-arabinan.ReportsconcerningenzymesspecificforL-arabinanarequitelimited.Pcabf43AcDNAencodingPcABF43Awasisolatedbyinvitrocloning.Thededucedaminoacidsequenceoftheenzymeshowshighsimilaritieswiththesequencesofotherfungaluncharacterizedproteins.Semi-quantitativeRT-PCRanalysisindicatedthatthePcabf43AgenewasconstitutivelyexpressedinP.chrysogenum31Batalowlevel,althoughtheexpressionwasinducedwithpecticcomponentssuchasL-arabinose,L-rhamnose,andD-galacturonicacid.AnalysisofenzymaticcharacteristicsofPcABF43A,GH51ABF(AFQ1),andGH54ABF(AFS1)fromP.chrysogenumsuggestedthatPcABF43AandAFS1functionasdebranchingenzymesandAFQ1playsaroleofsaccharificationinthedegradationofL-arabinanbythisfungus.
NascentpectinformedinGolgiapparatusofpeaepicotylsbyadditionofuronicacidshasdifferentpropertiesfromnascentpectinatthestageofgalactanelongation.
ABDel-Massih,R.M.,Rizkallah,H.D.,Al-Din,R.S.,Baydoun,E.A.H.&Brett,C.T.(2007).JournalofPlantPhysiology,164(1),1-10.
LinktoArticle
ReadAbstract
Microsomalmembraneswerepreparedfrometiolatedpea(PisumsativumL.)epicotylsandusedtoformnascent[Uronicacid-14C]pectin.Theenzymeproductswerecharacterizedbyselectiveenzymicdegradation,gelpermeationchromatographyandanalysisofcellulosebindingproperties.Theproductobtainedhadamolecularweightofaround40kDa,whichwassignificantlylowerthanthatofnascent[Gal-14C]pectinpreparedfromthesametissues.Itiscomposedmainlyofpolygalacturonanandperhapsalsorhamnogalacturonan(RG-I).Evidencewasobtainedforthepresenceofaproteinattachedtothenascent[Uronicacid-14C]pectin,butitwasunaffectedbyendoglucanaseanddidnotbindtocellulose.Hence,noxyloglucanappearedtobeattachedtothenascent[Uronicacid-14C]pectin.Amodelisproposedinwhichxyloglucanisattachedtonascentpectinafterformationofhomogalacturonan,butbeforethepectinleavestheGolgiapparatus.
Enzymaticchangesinpecticpolysaccharidesrelatedtothebeneficialeffectofsoakingonbeancookingtime.
Martínez‐Manrique,E.,Jacinto‐Hernández,C.,Garza‐García,R.,Campos,A.,Moreno,E.&Bernal‐Lugo,I.(2011).JournaloftheScienceofFoodandAgriculture,91(13),2394-2398.
LinktoArticle
ReadAbstract
Background:Cookingtimedecreaseswhenbeansaresoakedfirst.However,themolecularbasisofthisdecreaseremainsunclear.Todeterminethemechanismsinvolved,changesinbothpecticpolysaccharidesandcellwallenzymesweremonitoredduringsoaking.Twocultivarsandonebreedinglinewerestudied.Results:Soakingincreasedtheactivityofthecellwallenzymesrhamnogalacturonase,galactanaseandpolygalacturonase.Theiractivityinthecellwallwasdetectedaschangesinchemicalcompositionofpecticpolysaccharides.Rhamnosecontentdecreasedbutgalactoseanduronicacidcontentsincreasedinthepolysaccharidesofsoakedbeans.Adecreaseintheaveragemolecularweightofthepectinfractionwasinducedduringsoaking.Thedecreaseinrhamnoseandthepolygalacturonaseactivitywereassociated(r=0.933,P=0.01,andr=0.725,P=0.01,respectively)withshortercookingtimeaftersoaking.Conclusion:PecticcellwallenzymesareresponsibleforthechangesinrhamnogalacturonanIandpolygalacturonaninducedduringsoakingandconstitutethebiochemicalfactorsthatgivebeancellwallsnewpolysaccharidearrangements.RhamnogalacturonanIisdispersedthroughouttheentirecellwallandinteractswithcelluloseandhemicellulosefibres,resultinginahigherrateofpecticpolysaccharidethermosolubilityand,therefore,ashortercookingtime.
Quantificationoffoodpolysaccharidemixturesby1HNMR.
Merkx,D.W.,Westphal,Y.,vanVelzen,E.J.,Thakoer,K.V.,deRoo,N.&vanDuynhoven,J.P.(2017).CarbohydratePolymers,179,379-385.
LinktoArticle
ReadAbstract
Polysaccharidesarefoodingredientsthatcriticallydeterminerheologicalpropertiesandshelflife.Aqualitativeandquantitativeassessmentonfood-specificpolysaccharidemixturesby1HNMRispresented.Themethodisbasedontheidentificationofintactpolysaccharides,combinedwithaquantitativeanalysisoftheirmonosaccharideconstituents.Identificationofthepolysaccharidesisachievedby1HNMRlineshapefittingwithpurecompoundspectra.ThemonomericcompositionwasdeterminedusingtheSaemanhydrolysisprocedure,followedbydirectmonosaccharidequantificationby1HNMR.Inthequantification,boththemonosaccharidedegradationduringhydrolysis,aswellasacorrectionforthenon-instantaneouspolysaccharidedissolutionweretakenintoaccount.Thesefactorswereparticularlyimportantforthequantificationofpectins.Themethodshowedoverallgoodrepeatability(RSDr=4.1±0.9%)andwithin-laboratoryreproducibility(RSDR=6.1±1.4%)forvariousfoodpolysaccharides.Polysaccharidemixtureswerequantitativelyresolvedbyanon-negativeleastsquaresestimation,usingidentifiedpolysaccharidesandtheirmolarmonosaccharidestoichiometryaspriorknowledge.Theaccuracyandprecisionofthepresentedmethodmakeitapplicabletoawiderangeoffoodpolysaccharidemixtureswithcomplexandoverlapping1HNMRspectra.
品牌介绍
Megazyme品牌产品简介
来源:作者:人气:2149发表时间:2016-05-19 10:59:00【大 中 小】
Megazyme是一家全球性公司,专注于开发和提供用于饮料、谷物、乳制品、食品、饲料、发酵、生物燃料和葡萄酒产业用的分析试剂、酶和检测试剂盒。Megazyme的许多检测试剂盒产品已经为众多官方科学协会(包括AOAC, AACC , RACI, EBC和ICC等),经过严格的审核,批准认证为官方标准方法,确保以准确、可靠、定量和易于使用的测试方法,满足客户的质量诉求。
Megazyme的主要产品线包括:
◆ 检测试剂盒
◆ 酶
◆ 酶底物
◆ 碳水化合物
◆ 化学品/仪器
官网地址:http://www.megazyme.com
检测试剂盒特色产品:
货号
中文品名
用途
K-ACETAF
乙酸[AF法]检测试剂盒
酶法定量分析乙酸最广泛使用的方法
K-ACHDF
可吸收糖/膳食纤维检测试剂盒
酒精沉淀法测定膳食纤维
K-AMIAR
氨快速检测试剂盒
用于包括葡萄汁、葡萄酒以及其它食品饮料样品中氨含量的快速检测分析。
K-AMYL
直链淀粉/支链淀粉检测试剂盒
谷物淀粉和而粉中直链淀粉/支链淀粉比例和含量检测
K-ARAB
阿拉伯聚糖检测试剂盒
果汁浓缩液中阿拉伯聚糖的检测
K-ASNAM
L-天冬酰胺/L-谷氨酰胺和氨快速检测试剂盒
用于食品工业中丙烯酰胺前体、细胞培养基、以及上清液组分中、L-天冬酰胺,谷氨酰胺和氨的检测分析
K-ASPTM
阿斯巴甜检测试剂盒
专业用于测定饮料和食品中阿斯巴甜含量,操作简单
K-BETA3
β-淀粉酶检测试剂盒
适用于麦芽粉中β-淀粉酶的测定
K-BGLU
混合键β-葡聚糖检测试剂盒
测定谷物、荞麦粉、麦汁、啤酒及其它食品中混合键β-葡聚糖(1,3:1,4-β-D-葡聚糖)的含量
K-CERA
α-淀粉酶检测试剂盒
谷物和发酵液(真菌和细菌)中α-淀粉酶的分析测定
K-CITR
柠檬酸检测试剂盒
快速、可靠地检测食品、饮料和其它物料中柠檬酸(柠檬酸盐)含量
K-DLATE
乳酸快速检测试剂盒
快速、特异性检测饮料、肉类、奶制品和其它食品中L-乳酸和D-乳酸(乳酸盐)含量
K-EBHLG
酵母β-葡聚糖酶检测试剂盒
用于测量和分析酵母中1,3:1,6?-β-葡聚糖,也可以检测1,3-葡聚糖
K-ETSULPH
总亚硫酸检测试剂盒
测定葡萄酒、饮料、食品和其他物料中总亚硫酸含量(按二氧化硫计)的一种简单,高效,可靠的酶法检测方法
K-FRGLMQ
D-果糖/D-葡萄糖[MegaQuant法]检测试剂盒
适用于使用megaquant?色度计(505nm下)测定葡萄、葡萄汁和葡萄酒中D-果糖和D-葡萄糖的含量。
K-FRUC
果聚糖检测试剂盒
含有淀粉、蔗糖和其他糖类的植物提取物和食品中果聚糖的含量测定。
K-FRUGL
D-果糖/D-葡萄糖检测试剂盒
对植物和食品中果糖或葡萄糖含量的酶法紫外分光测定。
K-GALM
半乳甘露聚糖检测试剂盒
食品和植物产品中半乳甘露聚糖的含量检测
K-GLUC
D-葡萄糖[GOPOD]检测试剂盒
谷物提取物中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUHK
D-葡萄糖[HK]检测试剂盒
植物和食品中D-葡萄糖的含量测定,可以和其它Megazyme检测试剂盒联合使用。
K-GLUM
葡甘聚糖检测试剂盒
植物和食品中葡甘聚糖的含量测定。
K-INTDF
总膳食纤维检测试剂盒
总膳食纤维特定检测和分析
K-LACGAR
乳糖/D-半乳糖快速检测试剂盒
用于快速检测食品和植物产品中乳糖、D-半乳糖和L-阿拉伯糖
K-LACSU
乳糖/蔗糖/D-葡萄糖检测试剂盒
混合面粉和其它物料中蔗糖、乳糖和D-葡萄糖的测定
K-LACTUL
乳果糖检测试剂盒
特异性、快速和灵敏测量奶基样品中乳果糖含量
K-MANGL
D-甘露糖/D-果糖/D-葡萄糖检测试剂盒
适合测定植物产品和多糖酸性水解产物中D-甘露糖含量
K-MASUG
麦芽糖/蔗糖/D-葡萄糖检测试剂盒
在植物和食品中麦芽糖,蔗糖和葡萄糖的含量检测
K-PECID
胶质识别检测试剂盒
食品配料中果胶的鉴别
K-PHYT
植酸(总磷)检测试剂盒
食品和饲料样品植酸/总磷含量测量的简便方法。不需要通过阴离子交换色谱对植酸纯化,适合于大量样本分析
K-PYRUV
丙酮酸检测试剂盒
在啤酒、葡萄酒、果汁、食品和体液中丙酮酸分析
K-RAFGA
棉子糖/D-半乳糖检测试剂盒
快速测量植物材料和食品中棉子糖和半乳糖含量
K-RAFGL
棉子糖/蔗糖/D-半乳糖检测试剂盒
分析种子和种子粉中D-葡萄糖、蔗糖、棉子糖、水苏糖和毛蕊花糖含量。通过将棉子糖、水苏糖和毛蕊花糖酶解D-葡萄糖、D-果糖和半乳糖,从而测定葡萄糖含量来确定
K-SDAM
淀粉损伤检测试剂盒
谷物面粉中淀粉损伤的检测和分析
K-SUCGL
蔗糖/D-葡萄糖检测试剂盒
饮料、果汁、蜂蜜和食品中蔗糖和葡萄糖的分析
K-SUFRG
蔗糖/D-果糖/D-葡萄糖检测试剂盒
适用于植物和食品中蔗糖、D-葡萄糖和D-果糖的测定
K-TDFR
总膳食纤维检测试剂盒
总膳食纤维检测
K-TREH
海藻糖检测试剂盒
快速、可靠地检测食品、饮料和其它物料中海藻糖含量
K-URAMR
尿素/氨快速检测试剂盒
适用于水、饮料、乳制品和食品中尿素和氨的快速测定
K-URONIC
D-葡萄糖醛酸/D-半乳糖醛酸检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中六元糖醛酸含量(D-葡萄糖醛酸和D-半乳糖醛酸)
K-XYLOSE
D-木糖检测试剂盒
简单、可靠、精确测定植物提取物、培养基/上清液以及其它物料中D-木糖含量
K-YBGL
Beta葡聚糖[酵母和蘑菇]检测试剂盒
检测酵母和蘑菇制品中1,3:1,6-beta-葡聚糖和α-葡聚糖含量
联络我们